College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China; Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China.
Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
Anal Chim Acta. 2021 Sep 22;1179:338812. doi: 10.1016/j.aca.2021.338812. Epub 2021 Jun 30.
Metal active species combined with N-doped porous carbon nanosheets usually own excellent electrochemical activity and sensing performance owing to its unique microstructure and composition. In this work, monodispersed Ni active sites anchored on N-doped porous carbon nanosheets (Ni@N-PCN) were facilely prepared via rational metal-organic frameworks (MOFs) route. Firstly, zeolitic imidazolate frameworks-8 (ZIF-8) was in situ grown on physically-exfoliated graphene nanosheets (GN) with homogeneous sandwich-like structure (ZIF-8@GN). Secondly, nickel bonded ZIF-8@GN hybrids (Ni/ZIF-8@GN) were obtained by ionic exchange reaction, and then transformed into Ni@N-PCN by high-temperature pyrolysis. Benefiting from the monodispersed Ni active sites and highly reactive N-doped porous carbon nanosheets (N-PCN), the as-prepared Ni@N-PCN hybrids displayed superior catalytic performance toward hydrogen peroxide (HO) sensing. As a result, a highly sensitive electrochemical sensing platform for HO was fabricated with low detection limit (0.032 μM), wide detection linearity (0.2-2332.8 μM), and high sensitivity (6085 μA cm mM). Besides, the as-developed electrochemical sensing platform was successfully applied to detect HO contents in biological medicine and food specimens with satisfied results. This study will provide effective guidance for the preparation of novel metal/N-doped carbon nanomaterials and establishment of high-performance electrochemical sensors.
金属活性物种与氮掺杂多孔碳纳米片结合通常具有优异的电化学活性和传感性能,这归因于其独特的微观结构和组成。在这项工作中,通过合理的金属有机框架(MOFs)路线,简便地制备了单分散的 Ni 活性位锚定在氮掺杂多孔碳纳米片上的 Ni@N-PCN(Ni@N-PCN)。首先,ZIF-8 原位生长在具有均匀夹层结构的物理剥离石墨烯纳米片(ZIF-8@GN)上。其次,通过离子交换反应得到镍键合的 ZIF-8@GN 杂化物(Ni/ZIF-8@GN),然后通过高温热解转化为 Ni@N-PCN。得益于单分散的 Ni 活性位和高反应性的氮掺杂多孔碳纳米片(N-PCN),所制备的 Ni@N-PCN 杂化物对过氧化氢(HO)传感表现出优异的催化性能。结果,构建了一种具有低检测限(0.032 μM)、宽检测线性范围(0.2-2332.8 μM)和高灵敏度(6085 μA cm mM)的高度灵敏的 HO 电化学传感平台。此外,所开发的电化学传感平台成功应用于生物医学和食品样本中 HO 含量的检测,得到了令人满意的结果。这项研究将为新型金属/N-掺杂碳纳米材料的制备和高性能电化学传感器的建立提供有效的指导。