Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.
German Center for Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany.
EMBO J. 2019 Sep 2;38(17):e100938. doi: 10.15252/embj.2018100938. Epub 2019 Jul 22.
Decreased nitric oxide (NO) bioavailability and oxidative stress are hallmarks of endothelial dysfunction and cardiovascular diseases. Although numerous proteins are S-nitrosated, whether and how changes in protein S-nitrosation influence endothelial function under pathophysiological conditions remains unknown. We report that active endothelial NO synthase (eNOS) interacts with and S-nitrosates pyruvate kinase M2 (PKM2), which reduces PKM2 activity. PKM2 inhibition increases substrate flux through the pentose phosphate pathway to generate reducing equivalents (NADPH and GSH) and protect against oxidative stress. In mice, the Tyr656 to Phe mutation renders eNOS insensitive to inactivation by oxidative stress and prevents the decrease in PKM2 S-nitrosation and reducing equivalents, thereby delaying cardiovascular disease development. These findings highlight a novel mechanism linking NO bioavailability to antioxidant responses in endothelial cells through S-nitrosation and inhibition of PKM2.
一氧化氮(NO)生物利用度降低和氧化应激是血管内皮功能障碍和心血管疾病的标志。尽管许多蛋白质都被 S-亚硝化了,但在病理生理条件下,蛋白质 S-亚硝化的变化是否以及如何影响内皮功能仍不清楚。我们报告称,活性内皮型一氧化氮合酶(eNOS)与丙酮酸激酶 M2(PKM2)相互作用并使其 S-亚硝化,从而降低 PKM2 的活性。PKM2 的抑制增加了通过戊糖磷酸途径的底物通量,以产生还原当量(NADPH 和 GSH)并抵抗氧化应激。在小鼠中,Tyr656 到 Phe 的突变使 eNOS 对氧化应激引起的失活不敏感,并防止 PKM2 的 S-亚硝化和还原当量减少,从而延缓心血管疾病的发展。这些发现强调了一种通过 S-亚硝化和抑制 PKM2 将 NO 生物利用度与内皮细胞抗氧化反应联系起来的新机制。