Suppr超能文献

S-亚硝基辅酶 A 还原酶系统通过代谢重编程来保护肾脏免受损伤。

Metabolic reprogramming by the S-nitroso-CoA reductase system protects against kidney injury.

机构信息

Institute for Transformative Molecular Medicine, Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH, USA.

Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA.

出版信息

Nature. 2019 Jan;565(7737):96-100. doi: 10.1038/s41586-018-0749-z. Epub 2018 Nov 28.

Abstract

Endothelial nitric oxide synthase (eNOS) is protective against kidney injury, but the molecular mechanisms of this protection are poorly understood. Nitric oxide-based cellular signalling is generally mediated by protein S-nitrosylation, the oxidative modification of Cys residues to form S-nitrosothiols (SNOs). S-nitrosylation regulates proteins in all functional classes, and is controlled by enzymatic machinery that includes S-nitrosylases and denitrosylases, which add and remove SNO from proteins, respectively. In Saccharomyces cerevisiae, the classic metabolic intermediate co-enzyme A (CoA) serves as an endogenous source of SNOs through its conjugation with nitric oxide to form S-nitroso-CoA (SNO-CoA), and S-nitrosylation of proteins by SNO-CoA is governed by its cognate denitrosylase, SNO-CoA reductase (SCoR). Mammals possess a functional homologue of yeast SCoR, an aldo-keto reductase family member (AKR1A1) with an unknown physiological role. Here we report that the SNO-CoA-AKR1A1 system is highly expressed in renal proximal tubules, where it transduces the activity of eNOS in reprogramming intermediary metabolism, thereby protecting kidneys against acute kidney injury. Specifically, deletion of Akr1a1 in mice to reduce SCoR activity increased protein S-nitrosylation, protected against acute kidney injury and improved survival, whereas this protection was lost when Enos (also known as Nos3) was also deleted. Metabolic profiling coupled with unbiased mass spectrometry-based SNO-protein identification revealed that protection by the SNO-CoA-SCoR system is mediated by inhibitory S-nitrosylation of pyruvate kinase M2 (PKM2) through a novel locus of regulation, thereby balancing fuel utilization (through glycolysis) with redox protection (through the pentose phosphate shunt). Targeted deletion of PKM2 from mouse proximal tubules recapitulated precisely the protective and mechanistic effects of S-nitrosylation in Akr1a1 mice, whereas Cys-mutant PKM2, which is refractory to S-nitrosylation, negated SNO-CoA bioactivity. Our results identify a physiological function of the SNO-CoA-SCoR system in mammals, describe new regulation of renal metabolism and of PKM2 in differentiated tissues, and offer a novel perspective on kidney injury with therapeutic implications.

摘要

内皮型一氧化氮合酶 (eNOS) 可保护肾脏免受损伤,但这种保护的分子机制尚不清楚。基于一氧化氮的细胞信号转导通常通过蛋白 S-亚硝基化来介导,即 Cys 残基的氧化修饰形成 S-亚硝基硫醇 (SNOs)。S-亚硝基化调节所有功能类别的蛋白质,并受包括 S-亚硝基化酶和去亚硝基化酶在内的酶机制控制,它们分别将 SNO 添加到蛋白质中并将其从蛋白质中去除。在酿酒酵母中,经典代谢中间产物辅酶 A (CoA) 通过与一氧化氮缀合形成 S-亚硝基-CoA (SNO-CoA),成为 SNO 的内源性来源,SNO-CoA 对蛋白质的 S-亚硝基化受其同源的 SNO-CoA 还原酶 (SCoR) 控制。哺乳动物具有功能性的酵母 SCoR 同源物,一种醛酮还原酶家族成员 (AKR1A1),但其生理作用未知。在这里,我们报告 SNO-CoA-AKR1A1 系统在肾脏近端小管中高度表达,在那里它通过重塑中间代谢来转导 eNOS 的活性,从而保护肾脏免受急性肾损伤。具体而言,通过减少 SCoR 活性的 Akr1a1 基因敲除可增加蛋白质 S-亚硝基化,防止急性肾损伤并提高存活率,而当同时敲除 Enos (也称为 Nos3) 时,这种保护作用就会丧失。代谢组学分析与基于非靶向质谱的 SNO-蛋白鉴定相结合表明,SNO-CoA-SCoR 系统的保护作用是通过一种新的调节位点,即丙酮酸激酶 M2 (PKM2) 的抑制性 S-亚硝基化来介导的,从而平衡燃料利用(通过糖酵解)和氧化还原保护(通过戊糖磷酸途径)。来自小鼠近端小管的 PKM2 的靶向缺失精确地再现了 Akr1a1 小鼠中 S-亚硝基化的保护和机制作用,而对 S-亚硝基化有抗性的 Cys 突变 PKM2 则否定了 SNO-CoA 的生物活性。我们的研究结果确定了哺乳动物中 SNO-CoA-SCoR 系统的生理功能,描述了肾脏代谢和分化组织中 PKM2 的新调节,并为具有治疗意义的肾脏损伤提供了新的视角。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验