Suppr超能文献

基于连贯性约束图 LSTM 的群组活动识别

Coherence Constrained Graph LSTM for Group Activity Recognition.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2022 Feb;44(2):636-647. doi: 10.1109/TPAMI.2019.2928540. Epub 2022 Jan 7.

Abstract

This work aims to address the group activity recognition problem by exploring human motion characteristics. Traditional methods hold that the motions of all persons contribute equally to the group activity, which suppresses the contributions of some relevant motions to the whole activity while overstating some irrelevant motions. To address this problem, we present a Spatio-Temporal Context Coherence (STCC) constraint and a Global Context Coherence (GCC) constraint to capture the relevant motions and quantify their contributions to the group activity, respectively. Based on this, we propose a novel Coherence Constrained Graph LSTM (CCG-LSTM) with STCC and GCC to effectively recognize group activity, by modeling the relevant motions of individuals while suppressing the irrelevant motions. Specifically, to capture the relevant motions, we build the CCG-LSTM with a temporal confidence gate and a spatial confidence gate to control the memory state updating in terms of the temporally previous state and the spatially neighboring states, respectively. In addition, an attention mechanism is employed to quantify the contribution of a certain motion by measuring the consistency between itself and the whole activity at each time step. Finally, we conduct experiments on two widely-used datasets to illustrate the effectiveness of the proposed CCG-LSTM compared with the state-of-the-art methods.

摘要

这项工作旨在通过探索人类运动特征来解决群体活动识别问题。传统方法认为所有人的运动对群体活动的贡献是均等的,这抑制了某些相关运动对整个活动的贡献,同时夸大了某些不相关运动的贡献。为了解决这个问题,我们提出了时空上下文一致性(STCC)约束和全局上下文一致性(GCC)约束,分别捕获相关运动并量化它们对群体活动的贡献。在此基础上,我们提出了一种新的基于 STCC 和 GCC 的一致性约束图 LSTM(CCG-LSTM),通过对个体的相关运动进行建模,同时抑制不相关运动,有效地识别群体活动。具体来说,为了捕获相关运动,我们构建了具有时间置信度门和空间置信度门的 CCG-LSTM,分别根据时间上的前一状态和空间上的邻接状态来控制记忆状态的更新。此外,还采用了注意力机制,通过在每个时间步测量自身与整个活动之间的一致性来量化某个运动的贡献。最后,我们在两个广泛使用的数据集上进行实验,结果表明与最先进的方法相比,所提出的 CCG-LSTM 是有效的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验