Wirtz Johannes, Wiehe Thomas
Institut für Genetik, Universität zu Köln, Germany.
Theor Popul Biol. 2019 Dec;130:94-105. doi: 10.1016/j.tpb.2019.07.005. Epub 2019 Jul 19.
We study the evolution of the population genealogy in the classic neutral Moran Model of finite size n∈N and in discrete time. The stochastic transformations that shape a Moran population can be realized directly on its genealogy and give rise to a process on a state space consisting of n-sized binary increasing trees. We derive a number of properties of this process, and show that they are in agreement with existing results on the infinite-population limit of the Moran Model. Most importantly, this process admits time reversal, which makes it possible to simplify the mechanisms determining state changes, and allows for a thorough investigation of the Most Recent Common Ancestorprocess.
我们研究了有限规模(n\in N)且时间离散的经典中性莫兰模型中种群谱系的演化。塑造莫兰种群的随机变换可以直接在其谱系上实现,并在由(n)大小的二元递增树组成的状态空间上产生一个过程。我们推导了这个过程的一些性质,并表明它们与莫兰模型的无限种群极限的现有结果一致。最重要的是,这个过程允许时间反转,这使得简化确定状态变化的机制成为可能,并允许对最近共同祖先过程进行深入研究。