Suppr超能文献

具有基因选择的莫兰模型中的合并对偶过程及λ合并极限。

A coalescent dual process in a Moran model with genic selection, and the lambda coalescent limit.

作者信息

Etheridge Alison M, Griffiths Robert C, Taylor Jesse E

机构信息

Department of Statistics, University of Oxford, OX1 3TG, UK.

出版信息

Theor Popul Biol. 2010 Sep;78(2):77-92. doi: 10.1016/j.tpb.2010.05.004.

Abstract

The genealogical structure of neutral populations in which reproductive success is highly-skewed has been the subject of many recent studies. Here we derive a coalescent dual process for a related class of continuous-time Moran models with viability selection. In these models, individuals can give birth to multiple offspring whose survival depends on both the parental genotype and the brood size. This extends the dual process construction for a multi-type Moran model with genic selection described in Etheridge and Griffiths (2009). We show that in the limit of infinite population size the non-neutral Moran models converge to a Markov jump process which we call the lamda-Fleming-Viot process with viability selection and we derive a coalescent dual for this process directly from the generator and as a limit from the Moran models. The dual is a branching-coalescing process similar to the Ancestral Selection Graph which follows the typed ancestry of genes backwards in time with real and virtual lineages. As an application, the transition functions of the non-neutral Moran and lamda-coalescent models are expressed as mixtures of the transition functions of the dual process.

摘要

生殖成功高度偏态的中性种群的谱系结构是近期许多研究的主题。在此,我们为一类相关的具有生存力选择的连续时间莫兰模型推导了一个合并对偶过程。在这些模型中,个体可以生育多个后代,其存活取决于亲本基因型和育雏规模。这扩展了Etheridge和Griffiths(2009年)中描述的具有基因选择的多类型莫兰模型的对偶过程构建。我们表明,在无限种群规模的极限情况下,非中性莫兰模型收敛到一个马尔可夫跳跃过程,我们称之为具有生存力选择的λ - 弗莱明 - 维奥特过程,并且我们直接从生成器以及作为莫兰模型的极限为这个过程推导了一个合并对偶。对偶是一个分支合并过程,类似于祖先选择图,它随着时间回溯追踪基因的类型祖先,包括真实和虚拟谱系。作为一个应用,非中性莫兰模型和λ - 合并模型的转移函数被表示为对偶过程转移函数的混合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验