Suppr超能文献

均匀活性系统中由网络拓扑介导的图灵模式。

Turing patterns mediated by network topology in homogeneous active systems.

作者信息

Mimar Sayat, Juane Mariamo Mussa, Park Juyong, Muñuzuri Alberto P, Ghoshal Gourab

机构信息

Department of Physics & Astronomy, University of Rochester, Rochester, New York 14607, USA.

Group of Nonlinear Physics, University of Santiago de Compostela, Santiago de Compostela 15782, Spain.

出版信息

Phys Rev E. 2019 Jun;99(6-1):062303. doi: 10.1103/PhysRevE.99.062303.

Abstract

Mechanisms of pattern formation-of which the Turing instability is an archetype-constitute an important class of dynamical processes occurring in biological, ecological, and chemical systems. Recently, it has been shown that the Turing instability can induce pattern formation in discrete media such as complex networks, opening up the intriguing possibility of exploring it as a generative mechanism in a plethora of socioeconomic contexts. Yet much remains to be understood in terms of the precise connection between network topology and its role in inducing the patterns. Here we present a general mathematical description of a two-species reaction-diffusion process occurring on different flavors of network topology. The dynamical equations are of the predator-prey class that, while traditionally used to model species population, has also been used to model competition between antagonistic features in social contexts. We demonstrate that the Turing instability can be induced in any network topology by tuning the diffusion of the competing species or by altering network connectivity. The extent to which the emergent patterns reflect topological properties is determined by a complex interplay between the diffusion coefficients and the localization properties of the eigenvectors of the graph Laplacian. We find that networks with large degree fluctuations tend to have stable patterns over the space of initial perturbations, whereas patterns in more homogenous networks are purely stochastic.

摘要

模式形成机制(图灵不稳定性是其原型)构成了生物、生态和化学系统中发生的一类重要动力学过程。最近,研究表明图灵不稳定性可在离散介质(如复杂网络)中诱导模式形成,这为在众多社会经济背景中将其作为一种生成机制进行探索开辟了有趣的可能性。然而,就网络拓扑与其在诱导模式形成中的作用之间的确切联系而言,仍有许多有待理解之处。在此,我们给出了在不同类型网络拓扑上发生的双物种反应扩散过程的一般数学描述。动力学方程属于捕食者 - 猎物类型,传统上用于对物种数量进行建模,但也被用于对社会背景中对抗性特征之间的竞争进行建模。我们证明,通过调整竞争物种的扩散或改变网络连通性,可在任何网络拓扑中诱导图灵不稳定性。涌现模式反映拓扑性质的程度由扩散系数与图拉普拉斯算子特征向量的局部化性质之间的复杂相互作用决定。我们发现,度波动较大的网络在初始扰动空间上往往具有稳定模式,而更均匀网络中的模式则纯粹是随机的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验