Suppr超能文献

基于 SMILES 描述符的蒙特卡罗法设计二酰基甘油酰基转移酶-1(DGAT1)抑制剂。

In silico design of diacylglycerol acyltransferase-1 (DGAT1) inhibitors based on SMILES descriptors using Monte-Carlo method.

机构信息

Department of Chemistry, Kurukshetra University , Kurukshetra , India.

Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology , Hisar , India.

出版信息

SAR QSAR Environ Res. 2019 Aug;30(8):525-541. doi: 10.1080/1062936X.2019.1629998. Epub 2019 Jul 23.

Abstract

Diabetes, obesity and other diseases related to metabolism are worldwide health problems. These syndromes can be well treated when a particular enzyme-based therapy is developed. Diacylglycerol acyltransferase (DGAT; EC 2.3.1.20) is a microsomal enzyme which is responsible for the synthesis of triglycerides from 1,2-diacylglycerol by catalyzing the acyl-CoA-dependent acylation. The obesity and type-II diabetes can be checked by the inhibition of DGAT1 enzyme. Quantitative structure-activity relationship (QSAR) modelling is an essential technique in drug design and development. To study the aspect of DGAT1 inhibitors, Monte-Carlo method-based QSAR was developed for 197 DGAT1 inhibitors. QSAR models were derived by using the optimal descriptor based on SMILES notation. Different statistical parameters including the novel index of ideality of correlation were applied to validate the generated QSAR models. Four random splits were prepared from the data set. The statistical criteria = 0.8129, = 0.8979 and = 0.7962 of the validation set of split 1 were the best; therefore, the developed QSAR model of split 1 was decided to be the leading model. The molecular fragments, which were promoter of endpoint increase or decrease were also determined. Thirteen new DGAT1 inhibitors were designed from the lead compound DGAT011.

摘要

糖尿病、肥胖症和其他与代谢有关的疾病是全球性的健康问题。当开发出一种特定的基于酶的治疗方法时,这些综合征可以得到很好的治疗。二酰基甘油酰基转移酶(DGAT;EC 2.3.1.20)是一种微粒体酶,负责通过催化酰基辅酶 A 依赖性酰化作用从 1,2-二酰基甘油合成三酰基甘油。肥胖症和 2 型糖尿病可以通过抑制 DGAT1 酶来控制。定量构效关系(QSAR)建模是药物设计和开发的重要技术。为了研究 DGAT1 抑制剂的方面,我们开发了基于蒙特卡罗方法的 197 种 DGAT1 抑制剂的 QSAR。QSAR 模型是通过基于 SMILES 符号的最佳描述符导出的。应用了不同的统计参数,包括相关理想性的新指数,以验证生成的 QSAR 模型。从数据集准备了四个随机分割。分割 1 的验证集的统计标准 = 0.8129、 = 0.8979 和 = 0.7962 是最好的;因此,决定将分割 1 的开发 QSAR 模型作为主导模型。还确定了促进终点增加或减少的分子片段。从先导化合物 DGAT011 设计了 13 种新的 DGAT1 抑制剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验