Suppr超能文献

采用混合最优描述符的蒙特卡罗方法对咪唑离子液体的熔点进行建模和预测。

The Monte Carlo approach to model and predict the melting point of imidazolium ionic liquids using hybrid optimal descriptors.

作者信息

Lotfi Shahram, Ahmadi Shahin, Kumar Parvin

机构信息

Department of Chemistry, Payame Noor University (PNU) 19395-4697 Tehran Iran

Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University Tehran Iran

出版信息

RSC Adv. 2021 Oct 18;11(54):33849-33857. doi: 10.1039/d1ra06861j.

Abstract

Ionic liquids (ILs) have captured intensive attention owing to their unique properties such as high thermal stability, negligible vapour pressure, high dissolution capacity and high ionic conductivity as well as their wide applications in various scientific fields including organic synthesis, catalysis, and industrial extraction processes. Many applications of ionic liquids (ILs) rely on the melting point ( ). Therefore, in the present manuscript, the melting points of imidazolium ILs are studied employing a quantitative structure-property relationship (QSPR) approach to develop a model for predicting the melting points of a data set of imidazolium ILs. The Monte Carlo algorithm of CORAL software is applied to build up a robust QSPR model to calculate the values of 353 imidazolium ILs. Using a combination of SMILES and hydrogen-suppressed molecular graphs (HSGs), the hybrid optimal descriptor is computed and used to generate the QSPR models. Internal and external validation parameters are also employed to evaluate the predictability and reliability of the QSPR model. Four splits are prepared from the dataset and each split is randomly distributed into four sets training set (≈33%), invisible training set (≈31%), calibration set (≈16%) and validation set (≈20%). In QSPR modelling, the numerical values of various statistical features of the validation sets such as , , and IIC are found to be in the range of 0.7846-0.8535, 0.7687-0.8423 and 0.7424-0.8982, respectively. For mechanistic interpretation, the structural attributes which are responsible for the increase/decrease of are also extracted.

摘要

离子液体(ILs)因其独特的性质,如高热稳定性、可忽略不计的蒸气压、高溶解能力和高离子电导率,以及在包括有机合成、催化和工业萃取过程在内的各种科学领域的广泛应用而备受关注。离子液体(ILs)的许多应用都依赖于熔点( )。因此,在本论文中,采用定量结构-性质关系(QSPR)方法研究了咪唑鎓离子液体的熔点,以建立一个预测咪唑鎓离子液体数据集熔点的模型。应用CORAL软件的蒙特卡罗算法建立一个稳健的QSPR模型,以计算353种咪唑鎓离子液体的 值。使用SMILES和氢抑制分子图(HSGs)的组合,计算并使用混合最优描述符来生成QSPR模型。还采用内部和外部验证参数来评估QSPR模型的可预测性和可靠性。从数据集中准备了四个分割,每个分割随机分为四个集合:训练集(≈33%)、不可见训练集(≈31%)、校准集(≈16%)和验证集(≈20%)。在QSPR建模中,发现验证集的各种统计特征的数值,如 、 和IIC,分别在0.7846 - 0.8535、0.7687 - 0.8423和0.7424 - 0.8982范围内。为了进行机理解释,还提取了导致 升高/降低的结构属性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a61/9042335/bdd54522103f/d1ra06861j-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验