Suppr超能文献

肿瘤药物开发中鼠类临床试验的设计、分析和应用。

The design, analysis and application of mouse clinical trials in oncology drug development.

机构信息

Crown Bioscience Inc., Suzhou Industrial Park, 218 Xinghu Street, Jiangsu, 215028, China.

Crown Bioscience, Inc, 3375 Scott Blvd, Suite 108, Santa Clara, CA, 95054, USA.

出版信息

BMC Cancer. 2019 Jul 22;19(1):718. doi: 10.1186/s12885-019-5907-7.

Abstract

BACKGROUND

Mouse clinical trials (MCTs) are becoming wildly used in pre-clinical oncology drug development, but a statistical framework is yet to be developed. In this study, we establish such as framework and provide general guidelines on the design, analysis and application of MCTs.

METHODS

We systematically analyzed tumor growth data from a large collection of PDX, CDX and syngeneic mouse tumor models to evaluate multiple efficacy end points, and to introduce statistical methods for modeling MCTs.

RESULTS

We established empirical quantitative relationships between mouse number and measurement accuracy for categorical and continuous efficacy endpoints, and showed that more mice are needed to achieve given accuracy for syngeneic models than for PDXs and CDXs. There is considerable disagreement between methods on calling drug responses as objective response. We then introduced linear mixed models (LMMs) to describe MCTs as clustered longitudinal studies, which explicitly model growth and drug response heterogeneities across mouse models and among mice within a mouse model. Case studies were used to demonstrate the advantages of LMMs in discovering biomarkers and exploring drug's mechanisms of action. We introduced additive frailty models to perform survival analysis on MCTs, which more accurately estimate hazard ratios by modeling the clustered mouse population. We performed computational simulations for LMMs and frailty models to generate statistical power curves, and showed that power is close for designs with similar total number of mice. Finally, we showed that MCTs can explain discrepant results in clinical trials.

CONCLUSIONS

Methods proposed in this study can make the design and analysis of MCTs more rational, flexible and powerful, make MCTs a better tool in oncology research and drug development.

摘要

背景

小鼠临床试验(MCT)在临床前肿瘤药物开发中得到了广泛应用,但尚未建立统计框架。本研究建立了这样的框架,并提供了关于 MCT 的设计、分析和应用的一般指南。

方法

我们系统地分析了来自大量 PDX、CDX 和同基因小鼠肿瘤模型的肿瘤生长数据,以评估多种疗效终点,并介绍了用于建模 MCT 的统计方法。

结果

我们建立了小鼠数量与分类和连续疗效终点测量精度之间的经验定量关系,并表明同基因模型需要更多的小鼠才能达到给定的精度,而 PDX 和 CDX 则不需要。不同方法在判断药物反应为客观反应方面存在很大差异。我们随后引入线性混合模型(LMM)将 MCT 描述为聚类纵向研究,该模型明确地在小鼠模型之间和小鼠模型内建模生长和药物反应的异质性。案例研究用于证明 LMM 在发现生物标志物和探索药物作用机制方面的优势。我们引入了加法脆弱模型来对 MCT 进行生存分析,通过对聚类的小鼠群体进行建模来更准确地估计危险比。我们对 LMM 和脆弱模型进行了计算模拟,生成了统计功效曲线,并表明具有类似总小鼠数量的设计具有相近的功效。最后,我们表明 MCT 可以解释临床试验中的不一致结果。

结论

本研究提出的方法可以使 MCT 的设计和分析更加合理、灵活和强大,使 MCT 成为肿瘤研究和药物开发的更好工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验