Suppr超能文献

在分析患者来源异种移植模型的小鼠临床试验抗肿瘤疗效的纵向模型选择上。

On the Choice of Longitudinal Models for the Analysis of Antitumor Efficacy in Mouse Clinical Trials of Patient-derived Xenograft Models.

机构信息

Department of Public Health, Inserm Bordeaux Population Health Research Centre, U1219, University of Bordeaux, Bordeaux, France.

Ipsen Innovation, Les Ulis, France.

出版信息

Cancer Res Commun. 2023 Jan 26;3(1):140-147. doi: 10.1158/2767-9764.CRC-22-0238. eCollection 2023 Jan.

Abstract

UNLABELLED

In translational oncology research, the patient-derived xenograft (PDX) model and its use in mouse clinical trials (MCT) are increasingly described. This involves transplanting a human tumor into a mouse and studying its evolution during follow-up or until death. A MCT contains several PDXs in which several mice are randomized to different treatment arms. Our aim was to compare longitudinal modeling of tumor growth using mixed and joint models. Mixed and joint models were compared in a real MCT ( = 225 mice) to estimate the effect of a chemotherapy and a simulation study. Mixed models assume that death is predictable by observed tumor volumes (data missing at random, MAR) while the joint models assume that death depends on nonobserved tumor volumes (data missing not at random, MNAR). In the real dataset, of 103 deaths, 97 mice were sacrificed when reaching a predetermined tumor size (MAR data). Joint and mixed model estimates of tumor growth slopes differed significantly [0.24 (0.13;0.36)log(mm)/week for mixed model vs. -0.02 [-0.16;0.11] for joint model]. By disrupting the MAR process of mice deaths (inducing MNAR process), the estimate of the joint model was 0.24 [0.04;0.45], close to mixed model estimation for the original dataset. The simulation results confirmed the bias in the slope estimate from the joint model. Using a MCT example, we show that joint model can provide biased estimates under MAR mechanisms of dropout. We thus recommend to carefully choose the statistical model according to nature of mice deaths.

SIGNIFICANCE

This work brings new arguments to a controversy on the correct choice of statistical modeling methods for the analysis of MCTs. We conclude that mixed models are more robust than joint models.

摘要

未加标签

在转化肿瘤学研究中,越来越多地描述了患者来源的异种移植(PDX)模型及其在小鼠临床试验(MCT)中的应用。这涉及将人类肿瘤移植到小鼠体内,并在随访或直至死亡期间研究其演变。MCT 包含多个 PDX,其中几个小鼠被随机分配到不同的治疗组。我们的目的是比较使用混合模型和联合模型进行肿瘤生长的纵向建模。在真实的 MCT(=225 只小鼠)中比较了混合模型和联合模型,以估计化疗的效果和模拟研究。混合模型假设死亡可以通过观察到的肿瘤体积来预测(数据随机缺失,MAR),而联合模型假设死亡取决于未观察到的肿瘤体积(数据非随机缺失,MNAR)。在真实数据集,103 例死亡中,97 例小鼠在达到预定肿瘤大小(MAR 数据)时被处死。混合模型和联合模型估计的肿瘤生长斜率差异显著[混合模型为 0.24(0.13;0.36)log(mm)/周,而联合模型为-0.02[-0.16;0.11]。通过破坏小鼠死亡的 MAR 过程(诱导 MNAR 过程),联合模型的估计值为 0.24[0.04;0.45],接近原始数据集的混合模型估计值。模拟结果证实了联合模型斜率估计的偏差。通过使用 MCT 示例,我们表明在 MAR 机制下,联合模型可能会产生有偏差的估计。因此,我们建议根据小鼠死亡的性质仔细选择统计模型。

意义

这项工作为关于分析 MCT 的正确选择统计建模方法的争议提供了新的论据。我们得出结论,混合模型比联合模型更稳健。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ef/10035449/6b5c186647c7/crc-22-0238_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验