Suppr超能文献

大肠杆菌 lac 操纵子单细胞 mRNA 分布的分析表达式和物理特性。

Analytical Expressions and Physics for Single-Cell mRNA Distributions of the lac Operon of E. coli.

机构信息

Gladstone Institutes, San Francisco, California.

Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, India.

出版信息

Biophys J. 2019 Aug 6;117(3):572-586. doi: 10.1016/j.bpj.2019.06.029. Epub 2019 Jul 3.

Abstract

Mechanistic models of stochastic gene expression are of considerable interest, but their complexity often precludes tractable analytical expressions for messenger RNA (mRNA) and protein distributions. The lac operon of Escherichia coli is a model system with regulatory elements such as multiple operators and DNA looping that are shared by many operons. Although this system is complex, intuition suggests that fast DNA looping may simplify it by causing the repressor-bound states of the operon to equilibrate rapidly, thus ensuring that the subsequent dynamics are governed by slow transitions between the repressor-free and the equilibrated repressor-bound states. Here, we show that this intuition is correct by applying singular perturbation theory to a mechanistic model of lac transcription with the scaled time constant of DNA looping as the perturbation parameter. We find that at steady state, the repressor-bound states satisfy detailed balance and are dominated by the looped states; moreover, the interaction between the repressor-free and the equilibrated repressor-bound states is described by an extension of the Peccoud-Ycart two-state model in which both (repressor-free and repressor-bound) states support transcription. The solution of this extended two-state model reveals that the steady-state mRNA distribution is a mixture of the Poisson and negative hypergeometric distributions, which reflects mRNAs obtained by transcription from the repressor-bound and repressor-free states. Finally, we show that the physics revealed by perturbation theory makes it easy to derive the extended two-state model equations for complex regulatory architectures.

摘要

随机基因表达的机制模型引起了相当大的关注,但由于其复杂性,通常无法推导出信使 RNA(mRNA)和蛋白质分布的可分析表达式。大肠杆菌的乳糖操纵子是一个具有多个操纵子和 DNA 环化等调节元件的模型系统。尽管该系统很复杂,但直觉表明,快速的 DNA 环化可能通过使操纵子的阻遏物结合态迅速达到平衡来简化它,从而确保随后的动力学由阻遏物自由态和平衡的阻遏物结合态之间的缓慢转变来控制。在这里,我们通过将 DNA 环化的比例时间常数作为摄动参数应用于带有缩放的 lac 转录的机制模型,证明了这种直觉是正确的。我们发现,在稳态下,阻遏物结合态满足详细平衡,并且主要由环化状态主导;此外,阻遏物自由态和平衡的阻遏物结合态之间的相互作用由 Peccoud-Ycart 两态模型的扩展来描述,其中(阻遏物自由态和阻遏物结合态)都支持转录。这个扩展的两态模型的解表明,稳态 mRNA 分布是泊松分布和负超几何分布的混合物,这反映了从阻遏物结合态和阻遏物自由态转录得到的 mRNA。最后,我们表明,摄动理论揭示的物理学使得为复杂的调节结构推导出扩展的两态模型方程变得容易。

相似文献

3
Effect of DNA looping on the induction kinetics of the lac operon.DNA环化对乳糖操纵子诱导动力学的影响。
J Theor Biol. 2007 Aug 21;247(4):695-712. doi: 10.1016/j.jtbi.2007.03.030. Epub 2007 Mar 28.
7
Quantifying heterogeneity of stochastic gene expression.量化随机基因表达的异质性。
J Theor Biol. 2019 Mar 21;465:56-62. doi: 10.1016/j.jtbi.2019.01.003. Epub 2019 Jan 4.

本文引用的文献

1
MicroRNA Based Feedforward Control of Intrinsic Gene Expression Noise.基于微小RNA的内在基因表达噪声前馈控制
IEEE/ACM Trans Comput Biol Bioinform. 2021 Jan-Feb;18(1):272-282. doi: 10.1109/TCBB.2019.2938502. Epub 2021 Feb 3.
3
Bursting onto the scene? Exploring stochastic mRNA production in bacteria.崭露头角?探索细菌中随机的 mRNA 产生。
Curr Opin Microbiol. 2018 Oct;45:124-130. doi: 10.1016/j.mib.2018.04.001. Epub 2018 Apr 26.
5
A geometric analysis of fast-slow models for stochastic gene expression.随机基因表达快慢模型的几何分析
J Math Biol. 2016 Jan;72(1-2):87-122. doi: 10.1007/s00285-015-0876-1. Epub 2015 Apr 2.
8
Suppression and enhancement of transcriptional noise by DNA looping.通过DNA环化抑制和增强转录噪声
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jun;89(6):062703. doi: 10.1103/PhysRevE.89.062703. Epub 2014 Jun 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验