Suppr超能文献

深度学习自发性觉醒波动可在神经发育的小鼠模型和患者中检测到早期胆碱能缺陷。

Deep learning of spontaneous arousal fluctuations detects early cholinergic defects across neurodevelopmental mouse models and patients.

机构信息

F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Boston, MA 02115.

Division of Developmental Medicine, Boston Children's Hospital, Boston, MA 02115.

出版信息

Proc Natl Acad Sci U S A. 2020 Sep 22;117(38):23298-23303. doi: 10.1073/pnas.1820847116. Epub 2019 Jul 22.

Abstract

Neurodevelopmental spectrum disorders like autism (ASD) are diagnosed, on average, beyond age 4 y, after multiple critical periods of brain development close and behavioral intervention becomes less effective. This raises the urgent need for quantitative, noninvasive, and translational biomarkers for their early detection and tracking. We found that both idiopathic (BTBR) and genetic (CDKL5- and MeCP2-deficient) mouse models of ASD display an early, impaired cholinergic neuromodulation as reflected in altered spontaneous pupil fluctuations. Abnormalities were already present before the onset of symptoms and were rescued by the selective expression of MeCP2 in cholinergic circuits. Hence, we trained a neural network (ConvNetACh) to recognize, with 97% accuracy, patterns of these arousal fluctuations in mice with enhanced cholinergic sensitivity (LYNX1-deficient). ConvNetACh then successfully detected impairments in all ASD mouse models tested except in MeCP2-rescued mice. By retraining only the last layers of ConvNetACh with heart rate variation data (a similar proxy of arousal) directly from Rett syndrome patients, we generated ConvNetPatients, a neural network capable of distinguishing them from typically developing subjects. Even with small cohorts of rare patients, our approach exhibited significant accuracy before (80% in the first and second year of life) and into regression (88% in stage III patients). Thus, transfer learning across species and modalities establishes spontaneous arousal fluctuations combined with deep learning as a robust noninvasive, quantitative, and sensitive translational biomarker for the rapid and early detection of neurodevelopmental disorders before major symptom onset.

摘要

神经发育障碍谱疾病,如自闭症(ASD),平均在 4 岁以后确诊,此时大脑发育的多个关键时期已经结束,行为干预的效果也变得不那么有效。这就迫切需要定量、无创且可转化的生物标志物来进行早期检测和跟踪。我们发现,自闭症的特发性(BTBR)和遗传(CDKL5 和 MeCP2 缺陷)小鼠模型均显示出早期胆碱能神经调节受损,表现为自发瞳孔波动改变。这些异常在症状出现之前就已经存在,并且通过在胆碱能回路中选择性表达 MeCP2 得到了挽救。因此,我们训练了一个神经网络(ConvNetACh),能够以 97%的准确率识别增强胆碱能敏感性(LYNX1 缺陷)小鼠的这些觉醒波动模式。ConvNetACh 随后成功地检测到除 MeCP2 挽救的小鼠以外的所有自闭症小鼠模型的损伤。通过仅使用来自雷特综合征患者的心率变化数据(一种类似觉醒的代理)重新训练 ConvNetACh 的最后几层,我们生成了 ConvNetPatients,这是一个能够将其与正常发育的个体区分开来的神经网络。即使对于罕见患者的小队列,我们的方法在生命的前两年(第一年和第二年分别为 80%)和进入退行期(III 期患者为 88%)之前和之后都表现出了显著的准确性。因此,跨物种和模态的迁移学习以及深度学习将自发觉醒波动确立为一种强大的无创、定量和敏感的转化生物标志物,可用于在主要症状出现之前快速和早期检测神经发育障碍。

相似文献

9
MeCP2 dysfunction in Rett syndrome and related disorders.雷特综合征及相关疾病中的MeCP2功能障碍。
Curr Opin Genet Dev. 2006 Jun;16(3):276-81. doi: 10.1016/j.gde.2006.04.009. Epub 2006 May 2.

引用本文的文献

本文引用的文献

1
Artificial intelligence powers digital medicine.人工智能推动数字医学发展。
NPJ Digit Med. 2018 Mar 14;1:5. doi: 10.1038/s41746-017-0012-2. eCollection 2018.
8
Deep learning for biology.用于生物学的深度学习
Nature. 2018 Feb 22;554(7693):555-557. doi: 10.1038/d41586-018-02174-z.
10
The BTBR mouse model of idiopathic autism - Current view on mechanisms.特发性自闭症的BTBR小鼠模型——机制的当前观点
Neurosci Biobehav Rev. 2017 May;76(Pt A):99-110. doi: 10.1016/j.neubiorev.2016.12.037. Epub 2017 Feb 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验