Ashayeri Hamidreza, Sobhi Navid, Pławiak Paweł, Pedrammehr Siamak, Alizadehsani Roohallah, Jafarizadeh Ali
Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran.
Nikookari Eye Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran.
Cancers (Basel). 2024 Jun 4;16(11):2138. doi: 10.3390/cancers16112138.
Artificial intelligence (AI), encompassing machine learning (ML) and deep learning (DL), has revolutionized medical research, facilitating advancements in drug discovery and cancer diagnosis. ML identifies patterns in data, while DL employs neural networks for intricate processing. Predictive modeling challenges, such as data labeling, are addressed by transfer learning (TL), leveraging pre-existing models for faster training. TL shows potential in genetic research, improving tasks like gene expression analysis, mutation detection, genetic syndrome recognition, and genotype-phenotype association. This review explores the role of TL in overcoming challenges in mutation detection, genetic syndrome detection, gene expression, or phenotype-genotype association. TL has shown effectiveness in various aspects of genetic research. TL enhances the accuracy and efficiency of mutation detection, aiding in the identification of genetic abnormalities. TL can improve the diagnostic accuracy of syndrome-related genetic patterns. Moreover, TL plays a crucial role in gene expression analysis in order to accurately predict gene expression levels and their interactions. Additionally, TL enhances phenotype-genotype association studies by leveraging pre-trained models. In conclusion, TL enhances AI efficiency by improving mutation prediction, gene expression analysis, and genetic syndrome detection. Future studies should focus on increasing domain similarities, expanding databases, and incorporating clinical data for better predictions.
人工智能(AI),涵盖机器学习(ML)和深度学习(DL),已经彻底改变了医学研究,推动了药物发现和癌症诊断方面的进展。机器学习识别数据中的模式,而深度学习利用神经网络进行复杂处理。预测建模面临的数据标注等挑战,可通过迁移学习(TL)来解决,即利用已有模型进行更快的训练。迁移学习在基因研究中显示出潜力,可改进基因表达分析、突变检测、遗传综合征识别以及基因型 - 表型关联等任务。本综述探讨了迁移学习在克服突变检测、遗传综合征检测、基因表达或表型 - 基因型关联方面挑战中的作用。迁移学习在基因研究的各个方面都显示出有效性。迁移学习提高了突变检测的准确性和效率,有助于识别基因异常。迁移学习可提高与综合征相关的基因模式的诊断准确性。此外,迁移学习在基因表达分析中发挥关键作用,以便准确预测基因表达水平及其相互作用。此外,迁移学习通过利用预训练模型增强了表型 - 基因型关联研究。总之,迁移学习通过改进突变预测、基因表达分析和遗传综合征检测提高了人工智能的效率。未来的研究应专注于增加领域相似性、扩展数据库以及纳入临床数据以进行更好的预测。