Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
Anal Bioanal Chem. 2020 Apr;412(9):2081-2088. doi: 10.1007/s00216-019-01980-2. Epub 2019 Jul 22.
Filamentous fungi are well-established production hosts that feature a strong interconnection between morphology, physiology, and productivity. For penicillin production in Penicillium chrysogenum, industrial processes frequently favor a pellet morphology comprising compact hyphal agglomerates. Inherently these tightly packed entanglements lead to inactive, degrading sections within the pellet's core because of limitations. Optimal process design requires detailed knowledge of the nature of the limitations and localization of productive zones in the biomass, which is generally obtainable through modeling and complex analytical methods such as oxygen microelectrode and histological investigations. Methods that combine physiological and morphological insight are crucial yet scarce for filamentous fungi. In this study, we used time-of-flight secondary ion mass spectrometry in combination with oxygen and glucose tracer substrates, requiring little effort for sample preparation and measurement. Our method is capable of analyzing oxygen and substrate uptake in various morphological structures by the use of O as a tracer. In parallel, we can assess productive biomass regions through identification of penicillin mass fragments to simultaneously study oxygen diffusion, substrate incorporation, and productive biomass sections.
丝状真菌是成熟的生产宿主,其形态、生理和生产力之间具有很强的关联性。对于青霉素在产黄青霉中的生产,工业过程通常有利于形成包含致密菌丝聚集体的颗粒形态。由于限制因素的存在,这些紧密缠绕的丝状真菌在颗粒核心中形成了无活性的、降解的部分。优化的工艺设计需要详细了解限制因素的性质和生物量中生产区域的定位,这通常可以通过建模和复杂的分析方法(如氧微电极和组织学研究)获得。对于丝状真菌来说,结合生理和形态学见解的方法至关重要,但却很少见。在这项研究中,我们使用飞行时间二次离子质谱联用技术,结合氧和葡萄糖示踪底物,这种方法仅需很少的努力即可进行样品制备和测量。我们的方法能够通过使用 O 作为示踪剂来分析各种形态结构中的氧和底物摄取。同时,我们可以通过鉴定青霉素质量片段来评估有生产力的生物量区域,从而同时研究氧扩散、底物掺入和有生产力的生物量部分。