Suppr超能文献

认知脆弱性各成分与抑郁症状之间的独特且可预测的关系。

Unique and predictive relationships between components of cognitive vulnerability and symptoms of depression.

机构信息

Department of Psychology, Harvard University, Cambridge, Massachusetts.

Department of Psychology, Rutgers University, New Brunswick, New Jersey.

出版信息

Depress Anxiety. 2019 Oct;36(10):950-959. doi: 10.1002/da.22935. Epub 2019 Jul 22.

Abstract

BACKGROUND

Cognitive vulnerability theories of depression outline multiple, distinct inferential biases constitutive of cognitive vulnerability to depression. These include attributing negative events to internal, stable, and global factors, assuming that negative events will lead to further negative consequences, and inferring that negative events reflect negative characteristics about the self. Extant research has insufficiently examined these biases as distinct, limiting our understanding of how the individual cognitive vulnerability components interrelate and confer risk for depression symptoms. Thus, we conducted exploratory network analyses to examine the relationships among the five components of negative cognitive style and explore how components may differentially relate to depressive symptoms in adolescents.

METHODS

Participants completed measures of negative cognitive style twice over a two-year period. We estimated Graphical Gaussian Models using contemporaneous data and computed a cross-lagged panel network using temporal data from baseline and 2-year follow-up.

RESULTS

Results reveal interesting structural dynamics among facets of negative cognitive style and depressive symptoms. For example, results point to biases towards stable and future-oriented inferences as highly influential among negative cognitive style components. The temporal model revealed the internal attributions component to be heavily influenced by depressive symptoms among adolescents, whereas stable and global attributions most influenced future symptoms.

CONCLUSIONS

This study presents novel approaches for investigating cognitive style and depression. From this perspective, perhaps more precise predictions can be made about how cognitive risk factors will lead to the development or worsening of psychopathology.

摘要

背景

抑郁的认知易损性理论概述了构成抑郁认知易损性的多种不同的推理偏差。这些偏差包括将消极事件归因于内部、稳定和全局因素,假设消极事件将导致进一步的消极后果,并推断消极事件反映了自己的消极特征。现有研究对这些偏差的研究不够充分,限制了我们对个体认知易损性成分如何相互关联并导致抑郁症状风险的理解。因此,我们进行了探索性网络分析,以研究消极认知风格的五个成分之间的关系,并探讨这些成分如何与青少年的抑郁症状产生差异关联。

方法

参与者在两年内两次完成消极认知风格的测量。我们使用同期数据估计图形高斯模型,并使用基线和 2 年随访的时间数据计算交叉滞后面板网络。

结果

结果揭示了消极认知风格和抑郁症状之间有趣的结构动态。例如,结果表明,稳定和面向未来的推理偏见在消极认知风格成分中具有高度影响力。时间模型显示,内部归因成分在青少年中受抑郁症状的影响较大,而稳定和全局归因则对未来症状的影响最大。

结论

本研究提出了研究认知风格和抑郁的新方法。从这个角度来看,也许可以更准确地预测认知风险因素将如何导致精神病理学的发展或恶化。

相似文献

引用本文的文献

本文引用的文献

2
A tutorial on regularized partial correlation networks.正则化偏相关网络教程。
Psychol Methods. 2018 Dec;23(4):617-634. doi: 10.1037/met0000167. Epub 2018 Mar 29.
7
Identifying highly influential nodes in the complicated grief network.识别复杂悲伤网络中的高影响力节点。
J Abnorm Psychol. 2016 Aug;125(6):747-57. doi: 10.1037/abn0000181. Epub 2016 Jun 16.
8
The Hopelessness Theory of Depression: A Quarter Century in Review.抑郁的绝望理论:回顾二十五年
Clin Psychol (New York). 2015 Dec 1;22(4):345-365. doi: 10.1111/cpsp.12125. Epub 2015 Nov 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验