Suppr超能文献

在多模态数据融合中同时进行稀疏正则化和降维

Performing Sparse Regularization and Dimension Reduction Simultaneously in Multimodal Data Fusion.

作者信息

Yang Zhengshi, Zhuang Xiaowei, Bird Christopher, Sreenivasan Karthik, Mishra Virendra, Banks Sarah, Cordes Dietmar

机构信息

Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, United States.

Departments of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States.

出版信息

Front Neurosci. 2019 Jul 3;13:642. doi: 10.3389/fnins.2019.00642. eCollection 2019.

Abstract

Collecting multiple modalities of neuroimaging data on the same subject is increasingly becoming the norm in clinical practice and research. Fusing multiple modalities to find related patterns is a challenge in neuroimaging analysis. Canonical correlation analysis (CCA) is commonly used as a symmetric data fusion technique to find related patterns among multiple modalities. In CCA-based data fusion, principal component analysis (PCA) is frequently applied as a preprocessing step to reduce data dimension followed by CCA on dimension-reduced data. PCA, however, does not differentiate between informative voxels from non-informative voxels in the dimension reduction step. Sparse PCA (sPCA) extends traditional PCA by adding sparse regularization that assigns zero weights to non-informative voxels. In this study, sPCA is incorporated into CCA-based fusion analysis and applied on neuroimaging data. A cross-validation method is developed and validated to optimize the parameters in sPCA. Different simulations are carried out to evaluate the improvement by introducing sparsity constraint to PCA. Four fusion methods including sPCA+CCA, PCA+CCA, parallel ICA and sparse CCA were applied on structural and functional magnetic resonance imaging data of mild cognitive impairment subjects and normal controls. Our results indicate that sPCA significantly can reduce the impact of non-informative voxels and lead to improved statistical power in uncovering disease-related patterns by a fusion analysis.

摘要

在同一受试者上收集多种神经影像数据模式在临床实践和研究中越来越成为常态。融合多种模式以寻找相关模式是神经影像分析中的一项挑战。典型相关分析(CCA)通常用作对称数据融合技术,以在多种模式之间找到相关模式。在基于CCA的数据融合中,主成分分析(PCA)经常作为预处理步骤应用,以降低数据维度,然后对降维后的数据进行CCA分析。然而,PCA在降维步骤中并未区分信息性体素和非信息性体素。稀疏主成分分析(sPCA)通过添加稀疏正则化扩展了传统PCA,该正则化将零权重分配给非信息性体素。在本研究中,sPCA被纳入基于CCA的融合分析并应用于神经影像数据。开发并验证了一种交叉验证方法以优化sPCA中的参数。进行了不同的模拟以评估通过对PCA引入稀疏约束的改进。将包括sPCA+CCA、PCA+CCA、并行独立成分分析(ICA)和稀疏CCA在内的四种融合方法应用于轻度认知障碍受试者和正常对照的结构和功能磁共振成像数据。我们的结果表明,sPCA可以显著降低非信息性体素的影响,并通过融合分析提高发现疾病相关模式的统计功效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72a0/6618346/2be87f3a5e7a/fnins-13-00642-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验