Boutte David, Liu Jingyu
The Mind Research Network, Albuquerque, NM 87131,
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2010 Dec;2010:422-426. doi: 10.1109/BIBM.2010.5706603. Epub 2011 Feb 4.
Fusion of functional magnetic resonance imaging (fMRI) and genetic information is becoming increasingly important in biomarker discovery. These studies can contain vastly different types of information occupying different measurement spaces and in order to draw significant inferences and make meaningful predictions about genetic influence on brain activity; methodologies need to be developed that can accommodate the acute differences in data structures. One powerful, and occasionally overlooked, method of data fusion is canonical correlation analysis (CCA). Since the data modalities in question potentially contain millions of variables in each measurement, conventional CCA is not suitable for this task. This paper explores applying a sparse CCA algorithm to fMRI and genetic data fusion.
功能磁共振成像(fMRI)与遗传信息的融合在生物标志物发现中变得越来越重要。这些研究可能包含占据不同测量空间的截然不同类型的信息,并且为了得出关于基因对大脑活动影响的重要推论并做出有意义的预测,需要开发能够适应数据结构中巨大差异的方法。一种强大且偶尔被忽视的数据融合方法是典型相关分析(CCA)。由于所讨论的数据模态在每次测量中可能潜在地包含数百万个变量,传统的CCA不适用于此任务。本文探讨将稀疏CCA算法应用于fMRI与遗传数据融合。