Suppr超能文献

记忆假体:是时候采用深度神经拟态计算方法了吗?

Memory Prosthesis: Is It Time for a Deep Neuromimetic Computing Approach?

作者信息

Cutsuridis Vassilis

机构信息

School of Computer Science, University of Lincoln, Lincoln, United Kingdom.

出版信息

Front Neurosci. 2019 Jul 4;13:667. doi: 10.3389/fnins.2019.00667. eCollection 2019.

Abstract

Memory loss, one of the most dreaded afflictions of the human condition, presents considerable burden on the world's health care system and it is recognized as a major challenge in the elderly. There are only a few neuromodulation treatments for memory dysfunctions. Open loop deep brain stimulation is such a treatment for memory improvement, but with limited success and conflicting results. In recent years closed-loop neuroprosthesis systems able to simultaneously record signals during behavioral tasks and generate with the use of internal neural factors the precise timing of stimulation patterns are presented as attractive alternatives and show promise in memory enhancement and restoration. A few such strides have already been made in both animals and humans, but with limited insights into their mechanisms of action. Here, I discuss why a deep neuromimetic computing approach linking multiple levels of description, mimicking the dynamics of brain circuits, interfaced with recording and stimulating electrodes could enhance the performance of current memory prosthesis systems, shed light into the neurobiology of learning and memory and accelerate the progress of memory prosthesis research. I propose what the necessary components (nodes, structure, connectivity, learning rules, and physiological responses) of such a deep neuromimetic model should be and what type of data are required to train/test its performance, so it can be used as a true substitute of damaged brain areas capable of restoring/enhancing their missing memory formation capabilities. Considerations to neural circuit targeting, tissue interfacing, electrode placement/implantation, and multi-network interactions in complex cognition are also provided.

摘要

记忆丧失是人类最可怕的痛苦之一,给全球医疗保健系统带来了巨大负担,并且被认为是老年人面临的一项重大挑战。针对记忆功能障碍的神经调节治疗方法寥寥无几。开环深部脑刺激就是一种用于改善记忆的治疗方法,但成效有限且结果相互矛盾。近年来,能够在行为任务期间同时记录信号,并利用内部神经因素生成精确刺激模式时间的闭环神经假体系统成为了颇具吸引力的替代方案,在记忆增强和恢复方面展现出了前景。在动物和人类身上都已经取得了一些这样的进展,但对其作用机制的了解有限。在此,我将探讨为何一种将多个描述层次联系起来、模仿脑回路动态、与记录和刺激电极相连接的深度神经拟态计算方法能够提高当前记忆假体系统的性能,阐明学习和记忆的神经生物学原理,并加速记忆假体研究的进展。我提出了这样一个深度神经拟态模型应具备的必要组成部分(节点、结构、连接性、学习规则和生理反应)以及训练/测试其性能所需的数据类型,以便它能够作为受损脑区的真正替代品,恢复/增强其缺失的记忆形成能力。文中还提供了针对神经回路靶向、组织连接、电极放置/植入以及复杂认知中的多网络相互作用的相关考量。

相似文献

5
Deep Brain Stimulation for Memory Modulation: A New Frontier.深部脑刺激调节记忆:新前沿。
World Neurosurg. 2019 Jun;126:638-646. doi: 10.1016/j.wneu.2018.12.184. Epub 2019 Jan 14.

本文引用的文献

1
Deep Brain Stimulation for Memory Modulation: A New Frontier.深部脑刺激调节记忆:新前沿。
World Neurosurg. 2019 Jun;126:638-646. doi: 10.1016/j.wneu.2018.12.184. Epub 2019 Jan 14.
5
Fornical Closed-Loop Stimulation for Alzheimer's Disease.穹窿闭环刺激治疗阿尔茨海默病。
Trends Neurosci. 2018 Jul;41(7):418-428. doi: 10.1016/j.tins.2018.03.015. Epub 2018 May 4.
7
Inhibitory interneurons in Alzheimer's disease.阿尔茨海默病中的抑制性中间神经元。
Bratisl Lek Listy. 2018;119(4):205-209. doi: 10.4149/BLL_2018_038.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验