Pechenkova Ekaterina, Nosikova Inna, Rumshiskaya Alena, Litvinova Liudmila, Rukavishnikov Ilya, Mershina Elena, Sinitsyn Valentin, Van Ombergen Angelique, Jeurissen Ben, Jillings Steven, Laureys Steven, Sijbers Jan, Grishin Alexey, Chernikova Ludmila, Naumov Ivan, Kornilova Ludmila, Wuyts Floris L, Tomilovskaya Elena, Kozlovskaya Inessa
Laboratory for Cognitive Research, Higher School of Economics, Moscow, Russia.
Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia.
Front Physiol. 2019 Jul 4;10:761. doi: 10.3389/fphys.2019.00761. eCollection 2019.
The present study reports alterations of task-based functional brain connectivity in a group of 11 cosmonauts after a long-duration spaceflight, compared to a healthy control group not involved in the space program. To elicit the postural and locomotor sensorimotor mechanisms that are usually most significantly impaired when space travelers return to Earth, a plantar stimulation paradigm was used in a block design fMRI study. The motor control system activated by the plantar stimulation involved the pre-central and post-central gyri, SMA, SII/operculum, and, to a lesser degree, the insular cortex and cerebellum. While no post-flight alterations were observed in terms of activation, the network-based statistics approach revealed task-specific functional connectivity modifications within a broader set of regions involving the activation sites along with other parts of the sensorimotor neural network and the visual, proprioceptive, and vestibular systems. The most notable findings included a post-flight increase in the stimulation-specific connectivity of the right posterior supramarginal gyrus with the rest of the brain; a strengthening of connections between the left and right insulae; decreased connectivity of the vestibular nuclei, right inferior parietal cortex (BA40) and cerebellum with areas associated with motor, visual, vestibular, and proprioception functions; and decreased coupling of the cerebellum with the visual cortex and the right inferior parietal cortex. The severity of space motion sickness symptoms was found to correlate with a post- to pre-flight difference in connectivity between the right supramarginal gyrus and the left anterior insula. Due to the complex nature and rapid dynamics of adaptation to gravity alterations, the post-flight findings might be attributed to both the long-term microgravity exposure and to the readaptation to Earth's gravity that took place between the landing and post-flight MRI session. Nevertheless, the results have implications for the multisensory reweighting and gravitational motor system theories, generating hypotheses to be tested in future research.
本研究报告了11名宇航员在长期太空飞行后基于任务的功能性脑连接的变化,与未参与太空计划的健康对照组相比。为了引出通常在太空旅行者返回地球时最明显受损的姿势和运动感觉运动机制,在一项块设计功能磁共振成像研究中使用了足底刺激范式。由足底刺激激活的运动控制系统涉及中央前回和中央后回、辅助运动区、第二躯体感觉区/岛盖,以及程度较轻的岛叶皮质和小脑。虽然在激活方面未观察到飞行后的变化,但基于网络的统计方法揭示了在更广泛的区域内任务特定的功能连接改变,这些区域包括激活部位以及感觉运动神经网络的其他部分以及视觉、本体感觉和前庭系统。最显著的发现包括飞行后右侧后缘上回与大脑其他部分的刺激特异性连接增加;左右岛叶之间的连接增强;前庭核、右侧顶下小叶(BA40)和小脑与与运动、视觉、前庭和本体感觉功能相关区域的连接减少;以及小脑与视觉皮质和右侧顶下小叶的耦合减少。发现太空晕动病症状的严重程度与飞行后和飞行前右侧缘上回与左侧前岛叶之间连接性的差异相关。由于适应重力变化的复杂性质和快速动态变化,飞行后的发现可能归因于长期的微重力暴露以及着陆和飞行后磁共振成像检查之间对地球重力的重新适应。然而,这些结果对多感觉重新加权和重力运动系统理论具有启示意义,为未来研究中有待测试的假设提供了依据。