Flores-Hernandez Cesar, Eskinazi Ilan, Hoenecke Heinz R, D'Lima Darryl D
Shiley Center for Orthopaedic Research & Education at Scripps Clinic, La Jolla, CA, USA.
JSES Open Access. 2019 Jun 14;3(2):77-82. doi: 10.1016/j.jses.2019.03.004. eCollection 2019 Jul.
Musculoskeletal computer models provide valuable insights into shoulder biomechanics. The shoulder is a complex joint composed of glenohumeral, scapulothoracic, acromioclavicular, and sternoclavicular articulations, whose function is largely dependent on the many muscles spanning these joints. However, the range of patient-to-patient variability in shoulder function is largely unknown. We therefore assessed the sensitivity of glenohumeral forces to population-based model input parameters that were likely to influence shoulder function.
We constructed musculoskeletal models of the shoulder in the AnyBody Modeling System (AnyBody Technology, Aalborg, Denmark). We used inverse dynamics and static optimization to solve for glenohumeral joint forces during a simulated shoulder elevation. We generated 1000 AnyBody models by uniformly distributing the following input parameters: subject height, scapulohumeral rhythm, humeral head radius, and acromiohumeral interval.
Increasing body height increased glenohumeral joint forces. Increasing the ratio of scapulothoracic to glenohumeral elevation also increased forces. Increasing humeral head radius and acromiohumeral interval decreased forces. The relative sensitivity of glenohumeral joint forces to input parameters was dependent on the angle of shoulder elevation. We developed an efficient method of generating and simulating musculoskeletal models representing a large population of shoulder arthroplasty patients. We found that scapulohumeral rhythm had a significant influence on glenohumeral joint force.
This finding underscores the importance of more accurately measuring and simulating scapulothoracic motion rather than using fixed ratios or average scapulothoracic motion. This modeling approach can be used to generate virtual populations for conducting efficient simulations and generating statistical conclusions.
肌肉骨骼计算机模型为肩部生物力学提供了有价值的见解。肩部是一个复杂的关节,由盂肱关节、肩胛胸壁关节、肩锁关节和胸锁关节组成,其功能很大程度上取决于跨越这些关节的众多肌肉。然而,肩部功能在患者之间的变异性范围很大程度上尚不清楚。因此,我们评估了盂肱关节力对可能影响肩部功能的基于人群的模型输入参数的敏感性。
我们在AnyBody建模系统(丹麦奥尔堡的AnyBody技术公司)中构建了肩部的肌肉骨骼模型。我们使用逆动力学和静态优化来求解模拟肩部抬高过程中的盂肱关节力。我们通过均匀分布以下输入参数生成了1000个AnyBody模型:受试者身高、肩胛肱骨节律、肱骨头半径和肩峰肱骨间距。
身高增加会增加盂肱关节力。肩胛胸壁与盂肱关节抬高的比例增加也会增加力。肱骨头半径和肩峰肱骨间距增加会减小力。盂肱关节力对输入参数的相对敏感性取决于肩部抬高的角度。我们开发了一种有效方法来生成和模拟代表大量肩部置换患者的肌肉骨骼模型。我们发现肩胛肱骨节律对盂肱关节力有显著影响。
这一发现强调了更准确地测量和模拟肩胛胸壁运动而不是使用固定比例或平均肩胛胸壁运动的重要性。这种建模方法可用于生成虚拟人群,以进行高效模拟并得出统计结论。