Suppr超能文献

介电击穿在二价阳离子作用下生成的氮化硅纳米孔:迁移速度的减缓及单核苷酸的识别。

Silicon nitride nanopore created by dielectric breakdown with a divalent cation: deceleration of translocation speed and identification of single nucleotides.

机构信息

Center for Technology Innovation - Healthcare, Research & Development Group, Hitachi Ltd, 1-280 Higashi-Koigakubo, Kokubunji, Tokyo 185-8601, Japan.

出版信息

Nanoscale. 2019 Aug 1;11(30):14426-14433. doi: 10.1039/c9nr03563j.

Abstract

Nanopore DNA sequencing with a solid-state nanopore requires deceleration of the ultrafast translocation speed of single-stranded DNA (ssDNA). We report an unexpected phenomenon: controlled dielectric breakdown (CBD) with a divalent metal cation, especially Ca2+, provides a silicon nitride nanopore with the ability to decelerate ssDNA speed to 100 μs per base even after solution replacement. This speed is two orders of magnitude slower than that for CBD with a conventional monovalent metal cation. Temperature dependence experiments revealed that the enthalpic barrier for a nanopore created via CBD with Ca2+ is 25-30kBT, comparable to that of a biological nanopore. The slowing effect originates from the strong interaction between ssDNA and divalent cations, which were coated on the sidewall of the nanopore during the CBD process. In addition, we found that the nanopore created via CBD with Ca2+ can decelerate the speed of even single-nucleotide monomers, dNMPs, to 0.1-10 ms per base. The four single nucleotides could be statistically identified according to their blockade currents. Our approach is simple and practical because it simultaneously allows nanopore fabrication, ssDNA deceleration and the identification of nucleotide monomers.

摘要

纳米孔 DNA 测序需要使单链 DNA(ssDNA)的超快迁移速度减速。我们报告了一个意想不到的现象:带有二价金属阳离子(尤其是 Ca2+)的受控介电击穿(CBD)为氮化硅纳米孔提供了减速 ssDNA 速度的能力,即使在更换溶液后,速度也能达到每碱基 100μs。这一速度比传统单价金属阳离子的 CBD 慢两个数量级。温度依赖性实验表明,通过 CBD 用 Ca2+ 形成的纳米孔的焓垒为 25-30kBT,与生物纳米孔相当。这种减速效应源自 ssDNA 与二价阳离子之间的强相互作用,这些阳离子在 CBD 过程中被涂覆在纳米孔的侧壁上。此外,我们发现通过 CBD 用 Ca2+ 形成的纳米孔甚至可以将单核苷酸单体(dNMPs)的速度减速至每碱基 0.1-10ms。根据它们的阻塞电流可以统计识别出这四个单核苷酸。我们的方法简单实用,因为它同时允许纳米孔的制造、ssDNA 的减速和核苷酸单体的识别。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验