Suppr超能文献

基于柏拉图多面体球簇的胶体晶体的计算自组装。

Computational self-assembly of colloidal crystals from Platonic polyhedral sphere clusters.

作者信息

Marson Ryan L, Teich Erin G, Dshemuchadse Julia, Glotzer Sharon C, Larson Ronald G

机构信息

Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

Soft Matter. 2019 Aug 7;15(31):6288-6299. doi: 10.1039/c9sm00664h.

Abstract

We explore a rich phase space of crystals self-assembled from colloidal "polyhedral sphere clusters (PSCs)," each of which consists of equal-sized "halo" spheres placed at the vertices of a polyhedron such that they just touch along each edge. Such clusters, created experimentally by fusing spheres, can facilitate assembly of useful colloidal crystal symmetries not attainable by unclustered spheres. While not crucial for their self-assembly, the center of the PSC can contain a "core" particle that can be used as a scaffold to build the PSC. Using Brownian dynamics simulations, we show the self-assembly of eight distinct crystalline phases from PSCs that correspond to the five Platonic polyhedra, and that are made of spheres with purely repulsive interactions. Strong crystalline order is seen in the centers of mass of the PSCs, or equivalently the core particles. The halo particles also may organize into crystal structures, usually with weaker crystalline order than the core particles. Notably, however, in crystals assembled from the octahedral and icosahedral PSCs, the halo particles are also well ordered, nesting within the crystals formed by the cores. Interestingly, despite the rounded nature of the PSCs, in some cases we obtain structures similar to those of the corresponding faceted polyhedra interacting only via excluded volume. Only the tetrahedral PSCs fail to self-assemble into a crystal, but we demonstrate that a pre-assembled crystal - whose halo particles sit on a close-packed face-centered cubic lattice, and whose core particles form a diamond structure - is stable at high density and melts into a hexagonal phase at lower density.

摘要

我们探索了由胶体“多面体球簇(PSC)”自组装形成的丰富晶体相空间,每个PSC由大小相等的“晕圈”球体组成,这些球体放置在多面体的顶点上,使得它们刚好沿每条边接触。通过融合球体实验生成的此类簇,可以促进形成有用的胶体晶体对称性,而这是未聚集的球体无法实现的。虽然对于它们的自组装不是关键因素,但PSC的中心可以包含一个“核心”粒子,该粒子可用作构建PSC的支架。使用布朗动力学模拟,我们展示了PSC自组装形成的八个不同晶相,它们对应于五个柏拉图多面体,并且由具有纯排斥相互作用的球体组成。在PSC的质心,或者等效地在核心粒子中,可以看到很强的晶体有序性。晕圈粒子也可能组织成晶体结构,通常其晶体有序性比核心粒子弱。然而,值得注意的是,在由八面体和二十面体PSC组装而成的晶体中,晕圈粒子也排列有序,嵌套在由核心形成的晶体内部。有趣的是,尽管PSC具有圆形特征,但在某些情况下,我们获得了与仅通过排除体积相互作用的相应多面体相似的结构。只有四面体PSC未能自组装成晶体,但我们证明,一种预先组装好的晶体——其晕圈粒子位于密堆积的面心立方晶格上,其核心粒子形成金刚石结构——在高密度下是稳定的,在低密度下会熔化成六方相。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验