Faculty of Basic and Biomedical Sciences, Paris Descartes University, INSERM UMRS 1124, Paris, France.
PLoS One. 2019 Jul 23;14(7):e0219440. doi: 10.1371/journal.pone.0219440. eCollection 2019.
Multiple statistical approaches have been proposed to validate reference genes in qPCR assays. However, conflicting results from these statistical methods pose a major hurdle in the choice of the best reference genes. Recent studies have proposed the use of at least three different methods but there is no consensus on how to interpret conflicting results. Researchers resort to averaging the stability ranks assessed by different approaches or attributing a weighted rank to candidate genes. However, we report here that the suitability of these validation methods can be influenced by the experimental setting. Therefore, averaging the ranks can lead to suboptimal assessment of stable reference genes if the method used is not suitable for analysis. As the respective approaches of these statistical methods are different, a clear understanding of the fundamental assumptions and the parameters that influence the calculation of reference gene stability is necessary. In this study, the stability of 10 candidate reference genes (Actb, Gapdh, Tbp, Sdha, Pgk1, Ppia, Rpl13a, Hsp60, Mrpl10, Rps26) was assessed using four common statistical approaches (GeNorm, NormFinder, Coefficient of Variation or CV analysis and Pairwise ΔCt method) in a longitudinal experimental setting. We used the development of the cerebellum and the spinal cord of mice as a model to assess the suitability of these statistical methods for reference gene validation. GeNorm and the Pairwise ΔCt were found to be ill suited due to a fundamental assumption in their stability calculations. Highly correlated genes were given better stability ranks despite significant overall variation. NormFinder fares better but the presence of highly variable genes influences the ranking of all genes because of the algorithm's construct. CV analysis estimates overall variation, but it fails to consider variation across groups. We thus highlight the assumptions and potential pitfalls of each method using our longitudinal data. Based on our results, we have devised a workflow combining NormFinder, CV analysis along with visual representation of mRNA fold changes and one-way ANOVA for validating reference genes in longitudinal studies. This workflow proves to be more robust than any of these methods used individually.
已经提出了多种统计方法来验证 qPCR 分析中的参考基因。然而,这些统计方法得出的相互矛盾的结果给最佳参考基因的选择带来了重大障碍。最近的研究提出至少使用三种不同的方法,但对于如何解释相互矛盾的结果尚无共识。研究人员倾向于平均评估不同方法的稳定性等级,或者给候选基因赋予加权等级。然而,我们在此报告称,这些验证方法的适用性可能会受到实验设置的影响。因此,如果使用的方法不适合分析,则平均等级可能会导致对稳定参考基因的评估不够理想。由于这些统计方法的方法不同,因此需要清楚地了解基本假设和影响参考基因稳定性计算的参数。在这项研究中,我们使用 4 种常用的统计方法(GeNorm、NormFinder、变异系数或 CV 分析和 Pairwise ΔCt 方法)在纵向实验设置中评估了 10 个候选参考基因(Actb、Gapdh、Tbp、Sdha、Pgk1、Ppia、Rpl13a、Hsp60、Mrpl10、Rps26)的稳定性。我们使用小鼠小脑和脊髓的发育作为模型来评估这些统计方法对参考基因验证的适用性。GeNorm 和 Pairwise ΔCt 由于其稳定性计算中的基本假设而被认为不合适。尽管存在显著的总体差异,但高度相关的基因被赋予了更好的稳定性等级。NormFinder 表现更好,但由于算法的结构,高度可变基因的存在会影响所有基因的排名。CV 分析估计总体变化,但它未能考虑组间的变化。因此,我们使用我们的纵向数据突出了每种方法的假设和潜在陷阱。根据我们的结果,我们设计了一个工作流程,该流程结合了 NormFinder、CV 分析以及 mRNA 折叠变化的直观表示和单向方差分析,用于在纵向研究中验证参考基因。该工作流程证明比单独使用这些方法中的任何一种都更稳健。