Suppr超能文献

利用深度最大激活神经网络提高蛋白质相互作用网络功能预测的准确性。

Using deep maxout neural networks to improve the accuracy of function prediction from protein interaction networks.

机构信息

Bioinformatics Group, Department of Computer Science, University College London, London, United Kingdom.

Biomedical Data Science Laboratory, The Francis Crick Institute, London, United Kingdom.

出版信息

PLoS One. 2019 Jul 23;14(7):e0209958. doi: 10.1371/journal.pone.0209958. eCollection 2019.

Abstract

Protein-protein interaction network data provides valuable information that infers direct links between genes and their biological roles. This information brings a fundamental hypothesis for protein function prediction that interacting proteins tend to have similar functions. With the help of recently-developed network embedding feature generation methods and deep maxout neural networks, it is possible to extract functional representations that encode direct links between protein-protein interactions information and protein function. Our novel method, STRING2GO, successfully adopts deep maxout neural networks to learn functional representations simultaneously encoding both protein-protein interactions and functional predictive information. The experimental results show that STRING2GO outperforms other protein-protein interaction network-based prediction methods and one benchmark method adopted in a recent large scale protein function prediction competition.

摘要

蛋白质-蛋白质相互作用网络数据提供了有价值的信息,可以推断基因之间的直接联系及其生物学作用。这些信息为蛋白质功能预测带来了一个基本假设,即相互作用的蛋白质往往具有相似的功能。借助最近开发的网络嵌入特征生成方法和深度最大输出神经网络,可以提取功能表示,对蛋白质-蛋白质相互作用信息和蛋白质功能之间的直接联系进行编码。我们的新方法 STRING2GO 成功地采用深度最大输出神经网络来学习功能表示,同时对蛋白质-蛋白质相互作用和功能预测信息进行编码。实验结果表明,STRING2GO 优于其他基于蛋白质-蛋白质相互作用网络的预测方法,以及最近在大规模蛋白质功能预测竞赛中采用的一种基准方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8402/6650051/a41b3b02cdfe/pone.0209958.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验