Bioinformatics Group, Department of Computer Science, University College London, London, United Kingdom.
Biomedical Data Science Laboratory, The Francis Crick Institute, London, United Kingdom.
PLoS One. 2019 Jul 23;14(7):e0209958. doi: 10.1371/journal.pone.0209958. eCollection 2019.
Protein-protein interaction network data provides valuable information that infers direct links between genes and their biological roles. This information brings a fundamental hypothesis for protein function prediction that interacting proteins tend to have similar functions. With the help of recently-developed network embedding feature generation methods and deep maxout neural networks, it is possible to extract functional representations that encode direct links between protein-protein interactions information and protein function. Our novel method, STRING2GO, successfully adopts deep maxout neural networks to learn functional representations simultaneously encoding both protein-protein interactions and functional predictive information. The experimental results show that STRING2GO outperforms other protein-protein interaction network-based prediction methods and one benchmark method adopted in a recent large scale protein function prediction competition.
蛋白质-蛋白质相互作用网络数据提供了有价值的信息,可以推断基因之间的直接联系及其生物学作用。这些信息为蛋白质功能预测带来了一个基本假设,即相互作用的蛋白质往往具有相似的功能。借助最近开发的网络嵌入特征生成方法和深度最大输出神经网络,可以提取功能表示,对蛋白质-蛋白质相互作用信息和蛋白质功能之间的直接联系进行编码。我们的新方法 STRING2GO 成功地采用深度最大输出神经网络来学习功能表示,同时对蛋白质-蛋白质相互作用和功能预测信息进行编码。实验结果表明,STRING2GO 优于其他基于蛋白质-蛋白质相互作用网络的预测方法,以及最近在大规模蛋白质功能预测竞赛中采用的一种基准方法。