North Carolina State University, Raleigh, North Carolina, United States.
University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States.
Invest Ophthalmol Vis Sci. 2019 Jul 1;60(8):3204-3214. doi: 10.1167/iovs.18-26200.
The effective management of glaucoma is hindered by an incomplete understanding of its pathologic mechanism. While important, intraocular pressure (IOP) alone is inadequate in explaining glaucoma. Non-IOP-mediated risk factors such as cerebrospinal fluid (CSF) pressure have been reported to contribute to glaucomatous optic neuropathy. Due to the difficulty associated with experimental measurement of the salient variables, such as the retrobulbar CSF pressure, porosity of the subarachnoid space (SAS), and especially those concerned with the perioptic SAS, there remains a limited understanding of the CSF behavior contributing to the translaminar pressure gradient (TLPG), hypothesized to be a critical factor in the development of glaucoma.
An integrated compartmental model describing the intracranial and orbital CSF dynamics, coupled with intraocular dynamics, is developed based on first principles of fluid mechanics. A sensitivity analysis is performed to identify anatomic characteristics that significantly affect the retrobulbar subarachnoid space (RSAS) pressure and, consequently, the TLPG.
Of the 28 parameters considered, the RSAS pressure is most sensitive to CSF flow resistance in the optic nerve SAS and the potential lymphatic outflow from the optic nerve SAS into the orbital space. A parametric study demonstrates that a combination of resistance in the range of 1.600 × 1012 - 1.930 × 1012 Pa s/m3 (200.0 - 241.3 mm Hg min/mL) with 5% to 10% lymphatic CSF outflow yields RSAS pressures that are consistent with the limited number of studies in the literature.
The results suggest that a small percentage of lymphatic CSF outflow through the optic nerve SAS is likely. In addition, flow resistance in the orbital CSF space, hypothesized to be a function of patient-specific optic nerve SAS architecture and optic canal geometry, is a critical parameter in regulating the RSAS pressure and TLPG.
由于对其病理机制的认识不完整,青光眼的有效管理受到阻碍。虽然眼压(IOP)很重要,但它不足以解释青光眼。已经报道了非 IOP 介导的风险因素,如脑脊液(CSF)压力,有助于青光眼视神经病变。由于实验测量 salient 变量(如球后 CSF 压力、蛛网膜下腔(SAS)的渗透性,尤其是与视周 SAS 相关的变量)存在困难,因此对 CSF 行为的了解有限,这些 CSF 行为有助于推测为青光眼发展的关键因素——跨层压力梯度(TLPG)。
根据流体力学的基本原理,开发了一个描述颅内和眼眶 CSF 动力学的综合分区模型,该模型与眼内动力学相结合。进行了敏感性分析,以确定显著影响球后蛛网膜下腔(RSAS)压力的解剖学特征,进而影响 TLPG。
在所考虑的 28 个参数中,RSAS 压力对视神经 SAS 中的 CSF 流动阻力以及潜在的从视神经 SAS 向眼眶空间的淋巴性 CSF 流出最为敏感。参数研究表明,在 1.600×1012-1.930×1012 Pa s/m3(200.0-241.3mmHg min/mL)范围内的阻力与 5%-10%的淋巴性 CSF 流出相结合,可产生与文献中有限数量的研究一致的 RSAS 压力。
结果表明,通过视神经 SAS 进行的少量淋巴性 CSF 流出是可能的。此外,眼眶 CSF 空间中的流动阻力,被假设为患者特异性视神经 SAS 结构和视神经管几何形状的函数,是调节 RSAS 压力和 TLPG 的关键参数。