Suppr超能文献

基于灰色系统理论的静电纺聚丙烯腈纤维直径预测与优化

Prediction and Optimization of Electrospun Polyacrylonitrile Fiber Diameter Based on Grey System Theory.

作者信息

Zhou Qihong, Lin Liqun, Chen Ge, Du Zhaoqun

机构信息

College of Mechanical Engineering, Donghua University, Shanghai 201620, China.

College of Textiles, Donghua University, Shanghai 201620, China.

出版信息

Materials (Basel). 2019 Jul 11;12(14):2237. doi: 10.3390/ma12142237.

Abstract

This paper provides a new method for predicting the diameter of electrospun nanofibers. Based on the grey system theory, the effects of polyacrylonitrile mass fraction, voltage, flow rate, and receiving distance on fiber diameter were studied. The GM(1,1) (grey model) model and DNGM(1,1) (The DNGM (1,1) model is based on the whitening differential equation using parameters to Directly estimate the approximate Non-homogeneous sequence Grey prediction Model) model were established to predict fiber diameter by a single-factor change, and the results showed high prediction accuracy. The multi-variable grey model MGM(1,n) (MGM(1,n) is a Multivariate Grey prediction Model) was used for prediction of fiber diameter when multiple factors change simultaneously. The results showed that the average modeling fitting error is 8.62%. The background value coefficients of the MGM(1,n) model were optimized, the average modeling fitting error was reduced to 1.01%, and the average prediction error was reduced to 1.33%. Combining the fractional optimization with the background-value coefficient optimization, the optimal background-value coefficient α and the order r were selected. The results showed that the average modeling fitting error is 0.85%, and the average prediction error is 0.38%. The results demonstrate that the grey system theory can effectively predict the diameter of polyacrylonitrile electrospinning fibers with high prediction accuracy. This theory can increase the control of nanofiber diameters in production.

摘要

本文提供了一种预测电纺纳米纤维直径的新方法。基于灰色系统理论,研究了聚丙烯腈质量分数、电压、流速和接收距离对纤维直径的影响。建立了GM(1,1)(灰色模型)模型和DNGM(1,1)(DNGM(1,1)模型基于使用参数直接估计近似非齐次序列灰色预测模型的白化微分方程)模型,通过单因素变化预测纤维直径,结果显示预测精度较高。当多个因素同时变化时,使用多变量灰色模型MGM(1,n)(MGM(1,n)是一种多元灰色预测模型)预测纤维直径。结果表明,平均建模拟合误差为8.62%。对MGM(1,n)模型的背景值系数进行优化,平均建模拟合误差降至1.01%,平均预测误差降至1.33%。结合分数优化和背景值系数优化,选择了最优背景值系数α和阶数r。结果表明,平均建模拟合误差为0.85%,平均预测误差为0.38%。结果表明,灰色系统理论能够有效预测聚丙烯腈电纺纤维的直径,预测精度较高。该理论可以提高生产中纳米纤维直径的控制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2de3/6679219/f1061c1ed5d5/materials-12-02237-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验