Suppr超能文献

基于生成对抗网络的高速铁路入侵物体图像生成

High-Speed Railway Intruding Object Image Generating with Generative Adversarial Networks.

作者信息

Guo Baoqing, Geng Gan, Zhu Liqiang, Shi Hongmei, Yu Zujun

机构信息

School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China.

Key Laboratory of Vehicle Advanced Manufacturing, Measuring and Control Technology, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China.

出版信息

Sensors (Basel). 2019 Jul 11;19(14):3075. doi: 10.3390/s19143075.

Abstract

Foreign object intrusion is a great threat to high-speed railway safety operations. Accurate foreign object intrusion detection is particularly important. As a result of the lack of intruding foreign object samples during the operational period, artificially generated ones will greatly benefit the development of the detection methods. In this paper, we propose a novel method to generate railway intruding object images based on an improved conditional deep convolutional generative adversarial network (C-DCGAN). It consists of a generator and multi-scale discriminators. Loss function is also improved so as to generate samples with a high quality and authenticity. The generator is extracted in order to generate foreign object images from input semantic labels. We synthesize the generated objects to the railway scene. To make the generated objects more similar to real objects, on scale in different positions of a railway scene, a scale estimation algorithm based on the gauge constant is proposed. The experimental results on the railway intruding object dataset show that the proposed C-DCGAN model outperforms several state-of-the-art methods and achieves a higher quality (the pixel-wise accuracy, mean intersection-over-union (mIoU), and mean average precision (mAP) are 80.46%, 0.65, and 0.69, respectively) and diversity (the Fréchet-Inception Distance (FID) score is 26.87) of generated samples. The mIoU of the real-generated pedestrian pairs reaches 0.85, and indicates a higher scale of accuracy for the generated intruding objects in the railway scene.

摘要

异物侵入对高速铁路安全运营构成巨大威胁。准确的异物侵入检测尤为重要。由于运营期间缺乏侵入异物样本,人工生成的样本将极大地有利于检测方法的发展。在本文中,我们提出了一种基于改进的条件深度卷积生成对抗网络(C-DCGAN)生成铁路侵入物体图像的新方法。它由一个生成器和多尺度判别器组成。损失函数也得到了改进,以便生成高质量和逼真的样本。提取生成器以便从输入语义标签生成异物图像。我们将生成的物体合成到铁路场景中。为了使生成的物体更类似于真实物体,在铁路场景的不同位置上,提出了一种基于轨距常数的尺度估计算法。在铁路侵入物体数据集上的实验结果表明,所提出的C-DCGAN模型优于几种现有方法,并且生成的样本具有更高的质量(像素级准确率、平均交并比(mIoU)和平均精度均值(mAP)分别为80.46%、0.65和0.69)和多样性(弗雷歇-因ception距离(FID)分数为26.87)。真实与生成的行人对的mIoU达到0.85,表明在铁路场景中生成的侵入物体具有更高的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5de/6679268/25da7a813dd8/sensors-19-03075-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验