Prakash Charan D, Karam Lina J
IEEE Trans Image Process. 2021;30:9220-9230. doi: 10.1109/TIP.2021.3124155. Epub 2021 Nov 10.
In this paper, we propose a novel generative framework which uses Generative Adversarial Networks (GANs) to generate features that provide robustness for object detection on reduced-quality images. The proposed GAN-based Detection of Objects (GAN-DO) framework is not restricted to any particular architecture and can be generalized to several deep neural network (DNN) based architectures. The resulting deep neural network maintains the exact architecture as the selected baseline model without adding to the model parameter complexity or inference speed. We first evaluate the effect of image quality on both object classification and object bounding box regression. We then test the models resulting from our proposed GAN-DO framework, using two state-of-the-art object detection architectures as the baseline models. We also evaluate the effect of the number of re-trained parameters in the generator of GAN-DO on the accuracy of the final trained model. Performance results provided using GAN-DO on object detection datasets establish an improved robustness to varying image quality and a higher mAP compared to the existing approaches.
在本文中,我们提出了一种新颖的生成框架,该框架使用生成对抗网络(GAN)来生成特征,这些特征可为低质量图像上的目标检测提供鲁棒性。所提出的基于GAN的目标检测(GAN-DO)框架不限于任何特定架构,并且可以推广到几种基于深度神经网络(DNN)的架构。所得的深度神经网络保持与所选基线模型完全相同的架构,而不会增加模型参数的复杂性或推理速度。我们首先评估图像质量对目标分类和目标边界框回归的影响。然后,我们使用两种最先进的目标检测架构作为基线模型,测试我们提出的GAN-DO框架所产生的模型。我们还评估了GAN-DO生成器中重新训练参数的数量对最终训练模型准确性的影响。在目标检测数据集上使用GAN-DO提供的性能结果表明,与现有方法相比,其对变化的图像质量具有更高的鲁棒性和更高的平均精度均值(mAP)。