You Yong, Tu Ling, Wang Yajie, Tong Lifen, Wei Renbo, Liu Xiaobo
Research Branch of Advanced Functional Materials, School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China.
Nanomaterials (Basel). 2019 Jul 12;9(7):1006. doi: 10.3390/nano9071006.
Enhanced dielectric and mechanical properties of polyarylene ether nitrile (PEN) are obtained through secondary dispersion of polyaniline functionalized barium titanate (PANI--BT) by hot-stretching. PANI--BT nanoparticles with different PANI content are successfully prepared via in-situ aniline polymerization technology. The transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopic instrument (XPS) and Thermogravimetric analysis (TGA) results confirm that the PANI layers uniformly enclose on the surface of BaTiO nanoparticles. These nanoparticles are used as functional fillers to compound with PEN (PEN/PANI--BT) for studying its effect on the mechanical and dielectric performance of the obtained composites. In addition, the nanocomposites are uniaxial hot-stretched by 50% and 100% at 280 °C to obtain the oriented nanocomposite films. The results exhibit that the PANI--BT nanoparticles present good compatibility and dispersion in the PEN matrix, and the hot-stretching endows the second dispersion of PANI--BT in PEN resulting in enhanced mechanical properties, crystallinity and permittivity-temperature stability of the nanocomposites. The excellent performances of the nanocomposites indicate that a new approach for preparing high-temperature-resistant dielectric films is provided.
通过热拉伸实现聚苯胺功能化钛酸钡(PANI - BT)的二次分散,从而获得增强的聚芳醚腈(PEN)介电性能和机械性能。采用原位苯胺聚合技术成功制备了具有不同聚苯胺含量的PANI - BT纳米粒子。透射电子显微镜(TEM)、傅里叶变换红外光谱(FTIR)、X射线光电子能谱仪(XPS)和热重分析(TGA)结果证实,聚苯胺层均匀地包覆在钛酸钡纳米粒子表面。将这些纳米粒子用作功能填料与PEN复合(PEN/PANI - BT),以研究其对所得复合材料机械性能和介电性能的影响。此外,将纳米复合材料在280℃下进行50%和100%的单轴热拉伸,以获得取向纳米复合薄膜。结果表明,PANI - BT纳米粒子在PEN基体中具有良好的相容性和分散性,热拉伸使PANI - BT在PEN中实现二次分散,从而提高了纳米复合材料的机械性能、结晶度和介电常数 - 温度稳定性。纳米复合材料的优异性能表明提供了一种制备耐高温介电薄膜的新方法。