Caballero-Águila Raquel, Hermoso-Carazo Aurora, Linares-Pérez Josefa
Dpto. de Estadística, Universidad de Jaén, Paraje Las Lagunillas, 23071 Jaén, Spain.
Dpto. de Estadística, Universidad de Granada, Avda. Fuentenueva, 18071 Granada, Spain.
Sensors (Basel). 2019 Jul 14;19(14):3112. doi: 10.3390/s19143112.
In this paper, a cluster-based approach is used to address the distributed fusion estimation problem (filtering and fixed-point smoothing) for discrete-time stochastic signals in the presence of random deception attacks. At each sampling time, measured outputs of the signal are provided by a networked system, whose sensors are grouped into clusters. Each cluster is connected to a local processor which gathers the measured outputs of its sensors and, in turn, the local processors of all clusters are connected with a global fusion center. The proposed cluster-based fusion estimation structure involves two stages. First, every single sensor in a cluster transmits its observations to the corresponding local processor, where least-squares local estimators are designed by an innovation approach. During this transmission, deception attacks to the sensor measurements may be randomly launched by an adversary, with known probabilities of success that may be different at each sensor. In the second stage, the local estimators are sent to the fusion center, where they are combined to generate the proposed fusion estimators. The covariance-based design of the distributed fusion filtering and fixed-point smoothing algorithms does not require full knowledge of the signal evolution model, but only the first and second order moments of the processes involved in the observation model. Simulations are provided to illustrate the theoretical results and analyze the effect of the attack success probability on the estimation performance.
本文采用基于聚类的方法来解决存在随机欺骗攻击情况下离散时间随机信号的分布式融合估计问题(滤波和定点平滑)。在每个采样时刻,信号的测量输出由一个网络系统提供,该系统的传感器被分组为簇。每个簇连接到一个本地处理器,该处理器收集其传感器的测量输出,反过来,所有簇的本地处理器与一个全局融合中心相连。所提出的基于聚类的融合估计结构包括两个阶段。首先,一个簇中的每个单个传感器将其观测值传输到相应的本地处理器,在那里通过创新方法设计最小二乘本地估计器。在这种传输过程中,对手可能会以已知的成功概率随机发动对传感器测量值的欺骗攻击,每个传感器的成功概率可能不同。在第二阶段,本地估计器被发送到融合中心,在那里它们被组合以生成所提出的融合估计器。分布式融合滤波和定点平滑算法基于协方差的设计不需要完全了解信号演化模型,而只需要观测模型中所涉及过程的一阶和二阶矩。提供了仿真以说明理论结果并分析攻击成功概率对估计性能的影响。