Suppr超能文献

霍夫迈斯特效应在肽两亲分子纳米纤维自组装中的作用。

Hofmeister Effects on Peptide Amphiphile Nanofiber Self-Assembly.

出版信息

J Phys Chem B. 2019 Aug 15;123(32):7006-7013. doi: 10.1021/acs.jpcb.9b05532. Epub 2019 Aug 1.

Abstract

Self-assembled peptide amphiphile (PA) nanofibers have emerged as bio-inspired materials with numerous applications in nanotechnology. However, environmental variables, such as salt concentration, pH, or temperature, can greatly impact the self-assembly process. Being able to tune the electrostatic interaction and intermolecular hydrogen bonding is essential in designing stable structures. The ion-specific effects on stabilization of peptides in solution typically follow the Hofmeister series and can be used to control the strength of interaction between ions and PAs. In this study, we performed atomistic molecular dynamics simulations to understand how we can use Hofmeister effects to control PA nanofiber structure. Our results show that the formation of β-sheets in PA nanofibers follows a direct Hofmeister order (F > Cl > Br > I), resulting from the strong interaction of strongly hydrated ions (F, Cl) with the charged amino acid residues on the nanofiber surface. On the other hand, weakly hydrated ions (I, Br) interact more preferably with the hydrophobic residues that form the stable β-sheets in the interior of the peptide closer to the core of the nanofiber. We also found that strongly hydrated ions can induce coil to β-sheet transition in the lysine residues close to the nanofiber surface by forming salt bridges between lysine residues of neighboring PA chains. With this work, we provide insight into how the structure of PA nanofibers can be tuned using different salt solutions for developing more stable supramolecular nanofibers for future applications.

摘要

自组装肽两亲(PA)纳米纤维已经成为具有许多纳米技术应用的仿生材料。然而,环境变量,如盐浓度、pH 值或温度,会极大地影响自组装过程。能够调整静电相互作用和分子间氢键对于设计稳定的结构至关重要。离子对溶液中肽稳定的特殊影响通常遵循豪夫迈斯特序列,可以用于控制离子和 PA 之间的相互作用强度。在这项研究中,我们进行了原子分子动力学模拟,以了解如何利用豪夫迈斯特效应来控制 PA 纳米纤维的结构。我们的结果表明,PA 纳米纤维中β-折叠的形成遵循直接的豪夫迈斯特顺序(F > Cl > Br > I),这是由于强水合离子(F、Cl)与纳米纤维表面带电荷的氨基酸残基之间的强烈相互作用所致。另一方面,弱水合离子(I、Br)与靠近纳米纤维核心的肽内部形成稳定β-折叠的疏水性残基更优先相互作用。我们还发现,强水合离子可以通过在邻近 PA 链之间形成赖氨酸残基之间的盐桥,诱导赖氨酸残基附近的卷曲到β-折叠的转变。通过这项工作,我们深入了解了如何使用不同的盐溶液来调整 PA 纳米纤维的结构,以开发更稳定的超分子纳米纤维,用于未来的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验