Suppr超能文献

药物再利用与网络强化。

Drug repurposing with network reinforcement.

机构信息

Department of Industrial Engineering, Ajou University, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea.

Department of Surgery, Thyroid Cancer Center, Gangnam Severance Hospital, Institute of Refractory Thyroid Cancer, Yonsei University College of Medicine, 211 Eonjuro, Gangnam-gu, Seoul, 06273, Republic of Korea.

出版信息

BMC Bioinformatics. 2019 Jul 24;20(Suppl 13):383. doi: 10.1186/s12859-019-2858-6.

Abstract

BACKGROUND

Drug repurposing has been motivated to ameliorate low probability of success in drug discovery. For the recent decade, many in silico attempts have received primary attention as a first step to alleviate the high cost and longevity. Such study has taken benefits of abundance, variety, and easy accessibility of pharmaceutical and biomedical data. Utilizing the research friendly environment, in this study, we propose a network-based machine learning algorithm for drug repurposing. Particularly, we show a framework on how to construct a drug network, and how to strengthen the network by employing multiple/heterogeneous types of data.

RESULTS

The proposed method consists of three steps. First, we construct a drug network from drug-target protein information. Then, the drug network is reinforced by utilizing drug-drug interaction knowledge on bioactivity and/or medication from literature databases. Through the enhancement, the number of connected nodes and the number of edges between them become more abundant and informative, which can lead to a higher probability of success of in silico drug repurposing. The enhanced network recommends candidate drugs for repurposing through drug scoring. The scoring process utilizes graph-based semi-supervised learning to determine the priority of recommendations.

CONCLUSIONS

The drug network is reinforced in terms of the coverage and connections of drugs: the drug coverage increases from 4738 to 5442, and the drug-drug associations as well from 808,752 to 982,361. Along with the network enhancement, drug recommendation becomes more reliable: AUC of 0.89 was achieved lifted from 0.79. For typical cases, 11 recommended drugs were shown for vascular dementia: amantadine, conotoxin GV, tenocyclidine, cycloeucine, etc.

摘要

背景

药物再利用旨在改善药物发现成功率低的问题。在过去十年中,许多基于计算的方法受到了广泛关注,作为降低成本和延长研发周期的第一步。此类研究利用了药物和生物医学数据的丰富性、多样性和易获取性。在这个研究中,我们利用易于获取的研究环境,提出了一种基于网络的机器学习药物再利用算法。具体来说,我们展示了如何构建药物网络以及如何利用多种/异构类型的数据来增强网络。

结果

该方法由三个步骤组成。首先,我们从药物-靶蛋白信息构建药物网络。然后,利用文献数据库中的药物-药物相互作用的生物活性和/或药物信息来增强药物网络。通过增强,连接节点的数量和它们之间的边的数量变得更加丰富和信息丰富,这可以提高基于计算的药物再利用的成功率。增强后的网络通过药物评分推荐候选药物进行再利用。评分过程利用基于图的半监督学习来确定推荐的优先级。

结论

从药物的覆盖范围和连接性方面对药物网络进行了增强:药物覆盖范围从 4738 增加到 5442,药物-药物的关联性也从 808752 增加到 982361。随着网络的增强,药物推荐变得更加可靠:AUC 从 0.79 提高到 0.89。对于典型病例,血管性痴呆推荐了 11 种药物:金刚烷胺、芋螺毒素 GV、戊四氮、环乙硅氧烷等。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35cc/6651901/e335d4e0be5f/12859_2019_2858_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验