Suppr超能文献

发酵柯林斯菌 C,一种由人类微生物群中一个突出成员产生的抗梭状芽孢杆菌 sac 肽。

Ruminococcin C, an anti-clostridial sactipeptide produced by a prominent member of the human microbiota .

机构信息

Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.

Micalis Institute, ChemSyBio, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France

出版信息

J Biol Chem. 2019 Oct 4;294(40):14512-14525. doi: 10.1074/jbc.RA119.009416. Epub 2019 Jul 23.

Abstract

The human microbiota plays a central role in human physiology. This complex ecosystem is a promising but untapped source of bioactive compounds and antibiotics that are critical for its homeostasis. However, we still have a very limited knowledge of its metabolic and biosynthetic capabilities. Here we investigated an enigmatic biosynthetic gene cluster identified previously in the human gut symbiont This gene cluster which encodes notably for peptide precursors and putative radical SAM enzymes, has been proposed to be responsible for the biosynthesis of ruminococcin (RumC), a ribosomally synthesized and posttranslationally modified peptide (RiPP) with potent activity against the human pathogen By combining and approaches, including recombinant expression and purification of the respective peptides and proteins, enzymatic assays, and LC-MS analyses, we determined that RumC is a sulfur-to-α-carbon thioether-containing peptide (sactipeptide) with an unusual architecture. Moreover, our results support that formation of the thioether bridges follows a processive order, providing mechanistic insights into how radical SAM (AdoMet) enzymes install posttranslational modifications in RiPPs. We also found that the presence of thioether bridges and removal of the leader peptide are required for RumC's antimicrobial activity. In summary, our findings provide evidence that production of the anti- peptide RumC depends on an operon encoding five potential RumC precursor peptides and two radical SAM enzymes, uncover key RumC structural features, and delineate the sequence of posttranslational modifications leading to its formation and antimicrobial activity.

摘要

人类微生物群在人类生理学中起着核心作用。这个复杂的生态系统是生物活性化合物和抗生素的有前途但未开发的来源,这些化合物和抗生素对其体内平衡至关重要。然而,我们对其代谢和生物合成能力仍然知之甚少。在这里,我们研究了先前在人类肠道共生体中鉴定出的一个神秘生物合成基因簇。该基因簇编码肽前体和潜在的自由基 SAM 酶,据推测负责合成 rumococcin (RumC),这是一种核糖体合成和翻译后修饰的肽 (RiPP),对人类病原体具有强大的活性。通过结合和 方法,包括相应肽和蛋白质的重组表达和纯化、酶促测定和 LC-MS 分析,我们确定 RumC 是一种含有硫到α-碳硫醚的肽 (sactipeptide),具有不寻常的结构。此外,我们的结果支持硫醚桥的形成遵循一个连续的顺序,为了解自由基 SAM (AdoMet) 酶如何在 RiPPs 中安装翻译后修饰提供了机制上的见解。我们还发现硫醚桥的存在和前导肽的去除是 RumC 抗菌活性所必需的。总之,我们的发现提供了证据,证明抗肽 RumC 的产生依赖于一个编码五个潜在 RumC 前体肽和两个自由基 SAM 酶的 操纵子,揭示了关键的 RumC 结构特征,并描绘了导致其形成和抗菌活性的翻译后修饰的顺序。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a65/6779426/dff7b59d08e6/zbc0381910920001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验