Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA.
Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
mBio. 2019 Jul 23;10(4):e01428-19. doi: 10.1128/mBio.01428-19.
The formation of multimerized protein assemblies has emerged as a core component of immune signal amplification, yet the biochemical basis of this phenomenon remains unclear for many mammalian proteins within host defense pathways. The interferon-inducible protein 16 (IFI16) is a viral DNA sensor that oligomerizes upon binding to nuclear viral DNA and induces downstream antiviral responses. Here, we identify the pyrin domain (PYD) residues that mediate IFI16 oligomerization in a charge-dependent manner. Based on structure modeling, these residues are predicted to be surface exposed within distinct α-helices. By generating oligomerization-deficient mutants, we demonstrate that IFI16 homotypic clustering is necessary for its assembly onto parental viral genomes at the nuclear periphery upon herpes simplex virus 1 (HSV-1) infection. Preventing oligomerization severely hampered the capacity of IFI16 to induce antiviral cytokine expression, suppress viral protein levels, and restrict viral progeny production. Restoring oligomerization via residue-specific charge mimics partially rescued IFI16 antiviral roles. We show that pyrin domains from PYHIN proteins are functionally interchangeable, facilitating cooperative assembly with the IFI16 HINs, highlighting an inherent role for pyrin domains in antiviral response. Using immunoaffinity purification and targeted mass spectrometry, we establish that oligomerization promotes IFI16 interactions with proteins involved in transcriptional regulation, including PAF1C, UBTF, and ND10 bodies. We further discover PAF1C as an HSV-1 restriction factor. Altogether, our study uncovers intrinsic properties that govern IFI16 oligomerization, which serves as a signal amplification platform to activate innate immune responses and to recruit transcriptional regulatory proteins that suppress HSV-1 replication. The ability of mammalian cells to detect the genomes of nuclear-replicating viruses via cellular DNA sensors is fundamental to innate immunity. Recently, mounting evidence is supporting the universal role of polymerization in these host defense factors as a signal amplification strategy. Yet, what has remained unclear are the intrinsic properties that govern their immune signal transmission. Here, we uncover the biochemical basis for oligomerization of the nuclear DNA sensor, IFI16. Upon infection with herpes simplex virus 1 (HSV-1) in human fibroblasts, we characterize the contribution of IFI16 oligomerization to downstream protein interactions and antiviral functions, including cytokine induction and suppression of HSV-1 replication. Until now, the global characterization of oligomerization-dependent protein interactions for an immune receptor has never been explored. Our integrative quantitative proteomics, molecular CRISPR/Cas9-based assays, mutational analyses, and confocal microscopy shed light on the dynamics of immune signaling cascades activated against pathogens.
多聚化蛋白组装的形成已成为免疫信号放大的核心组成部分,但许多宿主防御途径中的哺乳动物蛋白的这种现象的生化基础仍不清楚。干扰素诱导蛋白 16(IFI16)是一种病毒 DNA 传感器,在与核内病毒 DNA 结合时会寡聚化,并诱导下游抗病毒反应。在这里,我们确定了以电荷依赖方式介导 IFI16 寡聚化的吡喃结构域(PYD)残基。基于结构建模,这些残基预测在不同的α-螺旋内暴露在表面。通过生成寡聚化缺陷突变体,我们证明 IFI16 同源聚类对于其在单纯疱疹病毒 1(HSV-1)感染时组装到核周亲代病毒基因组上是必要的。阻止寡聚化严重阻碍了 IFI16 诱导抗病毒细胞因子表达、抑制病毒蛋白水平和限制病毒产物产生的能力。通过残基特异性电荷模拟物恢复寡聚化部分挽救了 IFI16 的抗病毒作用。我们表明,PYHIN 蛋白的吡喃结构域在功能上可互换,促进与 IFI16 HIN 的协同组装,突出了吡喃结构域在抗病毒反应中的固有作用。通过免疫亲和纯化和靶向质谱分析,我们确定寡聚化促进 IFI16 与参与转录调节的蛋白质相互作用,包括 PAF1C、UBTF 和 ND10 体。我们进一步发现 PAF1C 是 HSV-1 的限制因子。总的来说,我们的研究揭示了控制 IFI16 寡聚化的内在特性,这是激活先天免疫反应和招募转录调节蛋白以抑制 HSV-1 复制的信号放大平台。哺乳动物细胞通过细胞 DNA 传感器检测核复制病毒基因组的能力是先天免疫的基础。最近,越来越多的证据支持聚合作用作为这些宿主防御因子的信号放大策略的普遍作用。然而,尚不清楚的是控制它们免疫信号转导的内在特性。在这里,我们揭示了核 DNA 传感器 IFI16 寡聚化的生化基础。在人成纤维细胞感染单纯疱疹病毒 1(HSV-1)后,我们描述了 IFI16 寡聚化对下游蛋白相互作用和抗病毒功能(包括细胞因子诱导和抑制 HSV-1 复制)的贡献。到目前为止,从未探索过免疫受体的寡聚化依赖蛋白相互作用的全局表征。我们的综合定量蛋白质组学、基于分子 CRISPR/Cas9 的测定、突变分析和共焦显微镜揭示了针对病原体激活的免疫信号级联的动态。