Suppr超能文献

胞质DNA感应免疫反应与病毒感染。

Cytosolic DNA-sensing immune response and viral infection.

作者信息

Abe Takayuki, Marutani Yuki, Shoji Ikuo

机构信息

Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku Kobe 650-0017, Japan.

出版信息

Microbiol Immunol. 2019 Feb;63(2):51-64. doi: 10.1111/1348-0421.12669. Epub 2019 Feb 26.

Abstract

How host cells recognize many kinds of RNA and DNA viruses and initiate innate antiviral responses against them has not yet been fully elucidated. Over the past decade, investigations into the mechanisms underlying these antiviral responses have focused extensively on immune surveillance sensors that recognize virus-derived components (such as lipids, sugars and nucleic acids). The findings of these studies have suggested that antiviral responses are mediated by cytosolic or intracellular compartment sensors and their adaptor molecules (e.g., TLR, myeloid differentiation primary response 88, retinoic acid inducible gene-I, IFN-β promoter stimulator-1, cyclic GMP-AMP synthase and stimulator of IFN genes axis) for the primary sensing of virus-derived nucleic acids, leading to production of type I IFNs, pro-inflammatory cytokines and chemokines by the host cells. Thus, host cells have evolved an elaborate host defense machinery to recognize and eliminate virus infections. In turn, to achieve sustained viral infection and induce pathogenesis, viruses have also evolved several counteracting strategies for achieving immune escape by targeting immune sensors, adaptor molecules, intracellular kinases and transcription factors. In this review, we discuss recent discoveries concerning the role of the cytosolic nucleic acid-sensing immune response in viral recognition and control of viral infection. In addition, we consider the regulatory machinery of the cytosolic nucleic acid-sensing immune response because these immune surveillance systems must be tightly regulated to prevent aberrant immune responses to self and non-self-nucleic acids.

摘要

宿主细胞如何识别多种RNA和DNA病毒并启动针对它们的先天性抗病毒反应尚未完全阐明。在过去十年中,对这些抗病毒反应潜在机制的研究广泛聚焦于识别病毒衍生成分(如脂质、糖类和核酸)的免疫监视传感器。这些研究结果表明,抗病毒反应由胞质或细胞内区室传感器及其衔接分子(如Toll样受体、髓样分化初级反应蛋白88、维甲酸诱导基因I、干扰素-β启动子刺激因子-1、环状GMP-AMP合酶和干扰素基因刺激因子轴)介导,用于对病毒衍生核酸进行初级感知,从而导致宿主细胞产生I型干扰素、促炎细胞因子和趋化因子。因此,宿主细胞已经进化出一套精细的宿主防御机制来识别和消除病毒感染。反过来,为了实现持续的病毒感染并引发发病机制,病毒也进化出了几种对抗策略,通过靶向免疫传感器、衔接分子、细胞内激酶和转录因子来实现免疫逃逸。在这篇综述中,我们讨论了关于胞质核酸感应免疫反应在病毒识别和控制病毒感染中的作用的最新发现。此外,我们还考虑了胞质核酸感应免疫反应的调节机制,因为这些免疫监视系统必须受到严格调节,以防止对自身和非自身核酸产生异常免疫反应。

相似文献

1
Cytosolic DNA-sensing immune response and viral infection.
Microbiol Immunol. 2019 Feb;63(2):51-64. doi: 10.1111/1348-0421.12669. Epub 2019 Feb 26.
2
How Dengue Virus Circumvents Innate Immunity.
Front Immunol. 2018 Dec 4;9:2860. doi: 10.3389/fimmu.2018.02860. eCollection 2018.
3
Camouflage and interception: how pathogens evade detection by intracellular nucleic acid sensors.
Immunology. 2019 Mar;156(3):217-227. doi: 10.1111/imm.13030. Epub 2018 Dec 18.
6
Recognition of viral nucleic acids in innate immunity.
Rev Med Virol. 2010 Jan;20(1):4-22. doi: 10.1002/rmv.633.
9
10
Viral evasion of DNA-stimulated innate immune responses.
Cell Mol Immunol. 2017 Jan;14(1):4-13. doi: 10.1038/cmi.2016.06. Epub 2016 Mar 14.

引用本文的文献

1
Dietary supplementation with nano-zinc modulates the expression of the antiviral immune gene : a novel report.
Front Immunol. 2025 Aug 4;16:1583956. doi: 10.3389/fimmu.2025.1583956. eCollection 2025.
3
Advances in nucleic acid-based cancer vaccines.
J Biomed Sci. 2025 Jan 21;32(1):10. doi: 10.1186/s12929-024-01102-w.
4
Chronic HIV Transcription, Translation, and Persistent Inflammation.
Viruses. 2024 May 9;16(5):751. doi: 10.3390/v16050751.
7
Korean Chestnut Honey Suppresses HSV-1 Infection by Regulating the ROS-NLRP3 Inflammasome Pathway.
Antioxidants (Basel). 2023 Oct 30;12(11):1935. doi: 10.3390/antiox12111935.
9
African Swine Fever Virus Interaction with Host Innate Immune Factors.
Viruses. 2023 May 23;15(6):1220. doi: 10.3390/v15061220.
10
Pathogen recognition by sensory neurons: hypotheses on the specificity of sensory neuron signaling.
Front Immunol. 2023 May 3;14:1184000. doi: 10.3389/fimmu.2023.1184000. eCollection 2023.

本文引用的文献

1
Species-Specific Deamidation of cGAS by Herpes Simplex Virus UL37 Protein Facilitates Viral Replication.
Cell Host Microbe. 2018 Aug 8;24(2):234-248.e5. doi: 10.1016/j.chom.2018.07.004.
2
Zika virus elicits inflammation to evade antiviral response by cleaving cGAS via NS1-caspase-1 axis.
EMBO J. 2018 Sep 14;37(18). doi: 10.15252/embj.201899347. Epub 2018 Jul 31.
3
Herpes Simplex Virus 1 γ34.5 Protein Inhibits STING Activation That Restricts Viral Replication.
J Virol. 2018 Sep 26;92(20). doi: 10.1128/JVI.01015-18. Print 2018 Oct 15.
4
Species-specific disruption of STING-dependent antiviral cellular defenses by the Zika virus NS2B3 protease.
Proc Natl Acad Sci U S A. 2018 Jul 3;115(27):E6310-E6318. doi: 10.1073/pnas.1803406115. Epub 2018 Jun 18.
5
Herpes Simplex Virus 1 Tegument Protein VP22 Abrogates cGAS/STING-Mediated Antiviral Innate Immunity.
J Virol. 2018 Jul 17;92(15). doi: 10.1128/JVI.00841-18. Print 2018 Aug 1.
7
BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis.
Science. 2018 Feb 23;359(6378). doi: 10.1126/science.aao6047.
8
TRIM56-mediated monoubiquitination of cGAS for cytosolic DNA sensing.
Nat Commun. 2018 Feb 9;9(1):613. doi: 10.1038/s41467-018-02936-3.
9
HBV Bypasses the Innate Immune Response and Does Not Protect HCV From Antiviral Activity of Interferon.
Gastroenterology. 2018 May;154(6):1791-1804.e22. doi: 10.1053/j.gastro.2018.01.044. Epub 2018 Feb 1.
10
TRIM29 promotes DNA virus infections by inhibiting innate immune response.
Nat Commun. 2017 Oct 16;8(1):945. doi: 10.1038/s41467-017-00101-w.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验