Department of Molecular Genetics, Erasmus University Medical Center, Wytemaweg 80, Rotterdam, 3015, CN, The Netherlands.
Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, The Netherlands.
Nat Commun. 2019 Jul 23;10(1):3287. doi: 10.1038/s41467-019-11246-1.
Homologous recombination (HR) and Fanconi Anemia (FA) pathway proteins in addition to their DNA repair functions, limit nuclease-mediated processing of stalled replication forks. However, the mechanism by which replication fork degradation results in genome instability is poorly understood. Here, we identify RIF1, a non-homologous end joining (NHEJ) factor, to be enriched at stalled replication forks. Rif1 knockout cells are proficient for recombination, but displayed degradation of reversed forks, which depends on DNA2 nuclease activity. Notably, RIF1-mediated protection of replication forks is independent of its function in NHEJ, but depends on its interaction with Protein Phosphatase 1. RIF1 deficiency delays fork restart and results in exposure of under-replicated DNA, which is the precursor of subsequent genomic instability. Our data implicate RIF1 to be an essential factor for replication fork protection, and uncover the mechanisms by which unprotected DNA replication forks can lead to genome instability in recombination-proficient conditions.
同源重组 (HR) 和范可尼贫血 (FA) 途径蛋白除了具有 DNA 修复功能外,还限制了核酶介导的停滞复制叉的加工。然而,复制叉降解导致基因组不稳定性的机制还知之甚少。在这里,我们鉴定出 RIF1(非同源末端连接 (NHEJ) 因子)在停滞的复制叉上富集。 Rif1 敲除细胞在重组方面表现出色,但显示出反转叉的降解,这依赖于 DNA2 核酸酶活性。值得注意的是,RIF1 对复制叉的保护作用与其在 NHEJ 中的功能无关,而是依赖于其与蛋白磷酸酶 1 的相互作用。RIF1 缺陷会延迟叉的重新启动,并导致复制不足的 DNA 暴露,这是随后基因组不稳定性的前体。我们的数据表明 RIF1 是复制叉保护的必需因素,并揭示了在重组功能良好的条件下,未受保护的 DNA 复制叉如何导致基因组不稳定性的机制。