Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States.
Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States.
Front Immunol. 2019 Jul 5;10:1512. doi: 10.3389/fimmu.2019.01512. eCollection 2019.
The trimeric envelope spikes on the HIV-1 virus surface initiate infection and comprise key targets for antiviral humoral responses. Circulating virions variably present intact envelope spikes, which react with neutralizing antibodies; and altered envelope structures, which bind non-neutralizing antibodies. Once bound, either type of antibody can enable humoral effector mechanisms with the potential to control HIV-1 infection . However, it is not clear how the presentation of neutralizing vs. non-neutralizing epitopes defines distinct virus populations and/or envelope structures on single particles. Here we used single-virion fluorescence correlation spectroscopy (FCS), fluorescence resonance energy transfer (FRET), and two-color coincidence FCS approaches to examine whether neutralizing and non-neutralizing antibodies are presented by the same envelope structure. Given the spatial requirements for donor-acceptor energy transfer (≤10 nm), FRET signals generated by paired neutralizing and non-neutralizing fluorescent Fabs should occur via proximal binding to the same target antigen. Fluorescent-labeled Fabs of the neutralizing anti-gp120 antibodies 2G12 and b12 were combined with Fabs of the non-neutralizing anti-gp41 antibody F240, previously thought to mainly bind gp41 "stumps." We find that both 2G12-F240 and/or b12-F240 Fab combinations generate FRET signals on multiple types of virions in solution. FRET efficiencies position the neutralizing and non-neutralizing epitopes between 7.1 and 7.8 nm apart; potentially fitting within the spatial dimensions of a single trimer-derived structure. Further, the frequency of FRET detection suggests that at least one of such structures occurs on the majority of particles in a virus population. Thus, there is frequent, overlapping presentation of non-neutralizing and neutralizing epitope on freely circulating HIV-1 surfaces. Such information provides a broader perspective of how anti-HIV humoral immunity interfaces with circulating virions.
HIV-1 病毒表面的三聚体包膜刺突启动感染,并成为抗病毒体液免疫反应的关键靶标。循环病毒粒子可变地呈现完整的包膜刺突,与中和抗体反应;以及改变的包膜结构,与非中和抗体结合。一旦结合,任何一种类型的抗体都可以使体液效应机制具有控制 HIV-1 感染的潜力。然而,目前尚不清楚中和表位与非中和表位的呈现如何定义单个粒子上不同的病毒群体和/或包膜结构。在这里,我们使用单病毒荧光相关光谱(FCS)、荧光共振能量转移(FRET)和双色符合 FCS 方法来研究中和和非中和抗体是否由相同的包膜结构呈现。鉴于供体-受体能量转移的空间要求(≤10nm),配对的中和和非中和荧光 Fab 产生的 FRET 信号应该通过与同一靶抗原的近端结合来发生。中和抗 gp120 抗体 2G12 和 b12 的荧光标记 Fab 与先前被认为主要结合 gp41“残基”的非中和抗 gp41 抗体 F240 的 Fab 结合。我们发现,2G12-F240 和/或 b12-F240 Fab 组合在溶液中的多种类型的病毒粒子上都产生 FRET 信号。FRET 效率将中和和非中和表位定位在 7.1nm 至 7.8nm 之间;潜在地适合于单个三聚体衍生结构的空间尺寸。此外,FRET 检测的频率表明,在病毒群体中的大多数粒子上至少有一种这样的结构发生。因此,在自由循环的 HIV-1 表面上经常出现中和和非中和表位的重叠呈现。这种信息提供了更广泛的视角,了解抗 HIV 体液免疫如何与循环病毒粒子相互作用。