Suppr超能文献

使用光学相干断层扫描血管造影术对视网膜血流进行自动特征分析。

Automatic Characterization of Retinal Blood Flow Using OCT Angiograms.

作者信息

Aharony Omer, Gal-Or Orly, Polat Asaf, Nahum Yoav, Weinberger Dov, Zimmer Yair

机构信息

School of Medical Engineering, Afeka College of Engineering, Tel Aviv, Israel.

Department of Ophthalmology, Rabin Medical Center, Petah Tikva, Israel.

出版信息

Transl Vis Sci Technol. 2019 Jul 15;8(4):6. doi: 10.1167/tvst.8.4.6. eCollection 2019 Jul.

Abstract

PURPOSE

To quantitatively characterize the retinal vascular network in healthy and pathological cases using optical coherence tomography angiography (OCTA) images.

METHODS

The study included 56 eyes of 28 patients as follows: 26 healthy, 20 with diabetic retinopathy (DR), 6 with age-related macular degeneration (AMD), and 4 with retinal vein occlusion (RVO). For 33 eyes (16 healthy and 17 with DR), vessel density maps were provided by the OCTA machine. An automatic algorithm classified the image (as healthy, DR, AMD, or RVO) and provided quantitative information obtained from the angiograms, including global vessel density, global fractal dimension, and fovea avascular zone (FAZ) area. Classification results were compared with the diagnosis made by a retina specialist. The quantitative values were compared with the literature and to values provided by the OCTA machine.

RESULTS

The success rate of classification was 83.9%. Vessel densities obtained by our algorithm (in healthy and DR cases) were significantly lower than the values reported in previous studies using OCTA. Similarly, they were much lower than the values provided by the OCTA machine. However, vessel densities in the healthy cases were similar to or higher than (depending on the retinal layer) the recently published values that may be considered as gold standard. Our values of fractal dimension were similar to those previously reported.

CONCLUSIONS

Our algorithm provides significantly improved vessel density values compared with previous studies. We believe our algorithm successfully omits false vessels.

TRANSLATIONAL RELEVANCE

Accurately assessing retinal vessel density enables better evaluation of retinal disorders.

摘要

目的

使用光学相干断层扫描血管造影(OCTA)图像对健康和病理情况下的视网膜血管网络进行定量表征。

方法

该研究纳入了28例患者的56只眼睛,具体如下:26例健康者,20例糖尿病视网膜病变(DR)患者,6例年龄相关性黄斑变性(AMD)患者,以及4例视网膜静脉阻塞(RVO)患者。对于33只眼睛(16例健康者和17例DR患者),OCTA设备提供了血管密度图。一种自动算法对图像进行分类(分为健康、DR、AMD或RVO),并提供从血管造影中获得的定量信息,包括整体血管密度、整体分形维数和黄斑无血管区(FAZ)面积。将分类结果与视网膜专科医生的诊断进行比较。将定量值与文献以及OCTA设备提供的值进行比较。

结果

分类成功率为83.9%。我们的算法得出的血管密度(在健康和DR病例中)显著低于先前使用OCTA的研究报告的值。同样,它们也远低于OCTA设备提供的值。然而,健康病例中的血管密度与最近公布的可被视为金标准的值相似或更高(取决于视网膜层)。我们的分形维数值与先前报道的值相似。

结论

与先前的研究相比,我们的算法提供了显著改进的血管密度值。我们相信我们的算法成功地排除了假血管。

转化相关性

准确评估视网膜血管密度有助于更好地评估视网膜疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52f4/6632182/b8b2eda9f96c/i2164-2591-8-4-6-f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验