Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Chicago, IL 60611, USA.
Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Chicago, IL 60611, USA.
Cell Rep. 2019 Jul 23;28(4):992-1002.e4. doi: 10.1016/j.celrep.2019.06.076.
Abnormal subthalamic nucleus (STN) activity is linked to impaired movement in Parkinson's disease (PD). The autonomous firing of STN neurons, which contributes to their tonic excitation of the extrastriatal basal ganglia and shapes their integration of synaptic input, is downregulated in PD models. Using electrophysiological, chemogenetic, genetic, and optical approaches, we find that chemogenetic activation of indirect pathway striatopallidal neurons downregulates intrinsic STN activity in normal mice but this effect is occluded in Parkinsonian mice. Loss of autonomous spiking in PD mice is prevented by STN N-methyl-D-aspartate receptor (NMDAR) knockdown and reversed by reactive oxygen species breakdown or K channel inhibition. Chemogenetic activation of hM3D(Gq) in STN neurons in Parkinsonian mice rescues their intrinsic activity, modifies their synaptic integration, and ameliorates motor dysfunction. Together these data argue that in PD mice increased indirect pathway activity leads to disinhibition of the STN, which triggers maladaptive NMDAR-dependent downregulation of autonomous firing.
异常的丘脑底核(STN)活动与帕金森病(PD)患者的运动障碍有关。STN 神经元的自主放电对其对纹状体外基底节的紧张性兴奋以及对其突触输入的整合有贡献,在 PD 模型中被下调。通过电生理、化学遗传学、遗传学和光学方法,我们发现化学遗传学激活间接通路纹状体苍白球神经元会下调正常小鼠的内在 STN 活性,但在帕金森病小鼠中这种作用被阻断。PD 小鼠中自主放电的丧失可以通过 STN N-甲基-D-天冬氨酸受体(NMDAR)敲低来预防,并通过活性氧物质分解或 K 通道抑制来逆转。在帕金森病小鼠的 STN 神经元中化学遗传学激活 hM3D(Gq)可挽救其内在活性,改变其突触整合,并改善运动功能障碍。这些数据表明,在 PD 小鼠中,间接通路活性的增加导致 STN 的去抑制,从而引发适应性 NMDAR 依赖性自主放电下调。
CNS Neurosci Ther. 2025-2
Cell Mol Life Sci. 2024-3-13
Proc Natl Acad Sci U S A. 2023-4-25
J Clin Invest. 2018-10-29
Cell Rep. 2018-6-19
J Neural Transm (Vienna). 2017-6-10