Suppr超能文献

利用电子健康记录(EHR)数据开发和验证哮喘恶化预测模型。

Development and validation of an asthma exacerbation prediction model using electronic health record (EHR) data.

机构信息

Department of Medicine, NorthShore University HealthSystem Research Institute, Evanston, IL, USA.

Department of Family Medicine, University of Chicago, Pritzker School of Medicine, Chicago, IL, USA.

出版信息

J Asthma. 2020 Dec;57(12):1339-1346. doi: 10.1080/02770903.2019.1648505. Epub 2019 Aug 8.

Abstract

Asthma exacerbations are associated with significant morbidity, mortality, and cost. Accurately identifying asthma patients at risk for exacerbation is essential. We sought to develop a risk prediction tool based on routinely collected data from electronic health records (EHRs). From a repository of EHRs data, we extracted structured data for gender, race, ethnicity, smoking status, use of asthma medications, environmental allergy testing BMI status, and Asthma Control Test scores (ACT). A subgroup of this population of patients with asthma that had available prescription fill data was identified, which formed the primary population for analysis. Asthma exacerbation was defined as asthma-related hospitalization, urgent/emergent visit or oral steroid use over a 12-month period. Univariable and multivariable statistical analysis was completed to identify factors associated with exacerbation. We developed and tested a risk prediction model based on the multivariable analysis. We identified 37,675 patients with asthma. Of those, 1,787 patients with asthma and fill data were identified, and 979 (54.8%) of them experienced an exacerbation. In the multivariable analysis, smoking (OR = 1.69, CI: 1.08-2.64), allergy testing (OR = 2.40, CI: 1.54-3.73), obesity (OR = 1.66, CI: 1.29-2.12), and ACT score reflecting uncontrolled asthma (OR = 1.66, CI: 1.10-2.29) were associated with increased risk of exacerbation. The area-under-the-curve (AUC) of our model in a combined derivation and validation cohort was 0.67. Despite use of rigorous methodology, we were unable to produce a predictive model with an acceptable degree of accuracy and AUC to be clinically useful.

摘要

哮喘恶化与显著的发病率、死亡率和成本有关。准确识别有哮喘恶化风险的患者至关重要。我们试图基于电子病历(EHR)中常规收集的数据开发一种风险预测工具。我们从 EHR 数据存储库中提取了有关性别、种族、民族、吸烟状况、哮喘药物使用、环境过敏测试 BMI 状况和哮喘控制测试(ACT)评分的结构化数据。确定了一个具有可用处方填充数据的哮喘患者亚组,该亚组构成了分析的主要人群。哮喘恶化定义为在 12 个月内与哮喘相关的住院治疗、紧急/紧急就诊或口服类固醇使用。完成了单变量和多变量统计分析,以确定与恶化相关的因素。我们基于多变量分析开发并测试了风险预测模型。我们确定了 37675 名哮喘患者。在这些患者中,有 1787 名哮喘患者和填充数据,其中 979 名(54.8%)经历了恶化。在多变量分析中,吸烟(OR=1.69,CI:1.08-2.64)、过敏测试(OR=2.40,CI:1.54-3.73)、肥胖(OR=1.66,CI:1.29-2.12)和反映未控制哮喘的 ACT 评分(OR=1.66,CI:1.10-2.29)与恶化风险增加相关。我们在联合推导和验证队列中的模型的曲线下面积(AUC)为 0.67。尽管使用了严格的方法,但我们无法生成具有可接受准确性和 AUC 的预测模型,使其在临床上有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验