Suppr超能文献

成人原发性哮喘发作预测模型:对报告方法和结果的系统评价

Primary Care Asthma Attack Prediction Models for Adults: A Systematic Review of Reported Methodologies and Outcomes.

作者信息

Ma Lijun, Tibble Holly

机构信息

Usher Institute, University of Edinburgh, Edinburgh, Scotland.

Asthma UK Centre for Applied Research, Edinburgh, Scotland.

出版信息

J Asthma Allergy. 2024 Mar 14;17:181-194. doi: 10.2147/JAA.S445450. eCollection 2024.

Abstract

Prognostic models hold great potential for predicting asthma exacerbations, providing opportunities for early intervention, and are a popular area of current research. However, it is unclear how models should be compared and contrasted, given their differences in both design and performance, particularly with a view to potential implementation in routine practice. This systematic review aimed to identify novel predictive models of asthma attacks in adults and compare differences in construction related to populations, outcome definitions, prediction time horizons, algorithms, validation, and performance estimation. Twenty-five studies were identified for comparison, with varying definitions of asthma attacks and prediction event time horizons ranging from 15 days to 30 months. The most commonly used algorithm was logistic regression (20/25 studies); however, none of the six which tested multiple algorithms identified it as highest performing algorithm. The effect of various study design characteristics on performance was evaluated in order to provide context to the limitations of highly performing models. Models used a variety of constructs, which affected both their performance and their viability for implementation in routine practice. Consultation with stakeholders is necessary to identify priorities for model refinement and to create a benchmark of acceptable performance for implementation in clinical practice.

摘要

预后模型在预测哮喘急性发作方面具有巨大潜力,为早期干预提供了机会,是当前研究的一个热门领域。然而,鉴于模型在设计和性能上的差异,尤其是考虑到其在常规实践中的潜在应用,目前尚不清楚应如何对模型进行比较和对比。本系统评价旨在识别成人哮喘发作的新型预测模型,并比较在人群、结局定义、预测时间范围、算法、验证和性能估计等方面与模型构建相关的差异。共确定了25项研究进行比较,哮喘发作的定义各不相同,预测事件的时间范围从15天到30个月不等。最常用的算法是逻辑回归(25项研究中有20项);然而,在测试多种算法的6项研究中,没有一项将其确定为性能最佳的算法。评估了各种研究设计特征对性能的影响,以便为高性能模型的局限性提供背景信息。模型使用了多种构建方式,这既影响了它们的性能,也影响了它们在常规实践中实施的可行性。有必要与利益相关者进行协商,以确定模型优化的优先事项,并创建一个可接受性能的基准,以便在临床实践中实施。

相似文献

9
Exacerbations in Adults with Asthma: A Systematic Review and External Validation of Prediction Models.成人哮喘加重:预测模型的系统评价和外部验证。
J Allergy Clin Immunol Pract. 2018 Nov-Dec;6(6):1942-1952.e15. doi: 10.1016/j.jaip.2018.02.004. Epub 2018 Feb 15.

本文引用的文献

1
A prediction model for asthma exacerbations after stopping asthma biologics.哮喘生物制剂停药后哮喘加重的预测模型。
Ann Allergy Asthma Immunol. 2023 Mar;130(3):305-311. doi: 10.1016/j.anai.2022.11.025. Epub 2022 Dec 9.
8
Novel Machine Learning Can Predict Acute Asthma Exacerbation.新型机器学习可预测哮喘急性加重
Chest. 2021 May;159(5):1747-1757. doi: 10.1016/j.chest.2020.12.051. Epub 2021 Jan 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验