Suppr超能文献

新型机器学习可预测哮喘急性加重

Novel Machine Learning Can Predict Acute Asthma Exacerbation.

机构信息

Respiratory Institute, Cleveland Clinic, Cleveland, OH; Lerner Research Institute, Cleveland Clinic, Cleveland, OH.

Respiratory Institute, Cleveland Clinic, Cleveland, OH.

出版信息

Chest. 2021 May;159(5):1747-1757. doi: 10.1016/j.chest.2020.12.051. Epub 2021 Jan 10.

Abstract

BACKGROUND

Asthma exacerbations result in significant health and economic burden, but are difficult to predict.

RESEARCH QUESTION

Can machine learning (ML) models with large-scale outpatient data predict asthma exacerbations?

STUDY DESIGN AND METHODS

We analyzed data extracted from electronic health records (EHRs) of asthma patients treated at the Cleveland Clinic from 2010 through 2018. Demographic information, comorbidities, laboratory values, and asthma medications were included as covariates. Three different models were built with logistic regression, random forests, and a gradient boosting decision tree to predict: (1) nonsevere asthma exacerbation requiring oral glucocorticoid burst, (2) ED visits, and (3) hospitalizations.

RESULTS

Of 60,302 patients, 19,772 (32.8%) had at least one nonsevere exacerbation requiring oral glucocorticoid burst, 1,748 (2.9%) requiring and ED visit and 902 (1.5%) requiring hospitalization. Nonsevere exacerbation, ED visit, and hospitalization were predicted best by light gradient boosting machine, an algorithm used in ML to fit predictive analytic models, and had an area under the receiver operating characteristic curve of 0.71 (95% CI, 0.70-0.72), 0.88 (95% CI, 0.86-0.89), and 0.85 (95% CI, 0.82-0.88), respectively. Risk factors for all three outcomes included age, long-acting β agonist, high-dose inhaled glucocorticoid, or chronic oral glucocorticoid therapy. In subgroup analysis of 9,448 patients with spirometry data, low FEV and FEV to FVC ratio were identified as top risk factors for asthma exacerbation, ED visits, and hospitalization. However, adding pulmonary function tests did not improve models' prediction performance.

INTERPRETATION

Models built with an ML algorithm from real-world outpatient EHR data accurately predicted asthma exacerbation and can be incorporated into clinical decision tools to enhance outpatient care and to prevent adverse outcomes.

摘要

背景

哮喘恶化会导致严重的健康和经济负担,但难以预测。

研究问题

使用大规模门诊数据的机器学习(ML)模型能否预测哮喘恶化?

研究设计和方法

我们分析了克利夫兰诊所 2010 年至 2018 年期间接受治疗的哮喘患者的电子健康记录(EHR)中提取的数据。将人口统计学信息、合并症、实验室值和哮喘药物作为协变量。使用逻辑回归、随机森林和梯度提升决策树构建了三种不同的模型,以预测:(1)需要口服糖皮质激素冲击的非重度哮喘恶化,(2)急诊就诊和(3)住院治疗。

结果

在 60302 名患者中,有 19772 名(32.8%)至少发生了一次需要口服糖皮质激素冲击的非重度恶化,有 1748 名(2.9%)需要急诊就诊,有 902 名(1.5%)需要住院治疗。轻度梯度提升机对非重度恶化、急诊就诊和住院治疗的预测效果最好,这是一种用于 ML 的算法,用于拟合预测分析模型,其接受者操作特征曲线下面积分别为 0.71(95%CI,0.70-0.72)、0.88(95%CI,0.86-0.89)和 0.85(95%CI,0.82-0.88)。所有三种结果的危险因素包括年龄、长效β激动剂、高剂量吸入糖皮质激素或慢性口服糖皮质激素治疗。在 9448 名有肺功能数据的患者亚组分析中,发现低 FEV 和 FEV/FVC 比值是哮喘恶化、急诊就诊和住院治疗的首要危险因素。然而,添加肺功能测试并没有提高模型的预测性能。

解释

使用真实世界门诊 EHR 数据构建的 ML 算法模型可以准确预测哮喘恶化,并可纳入临床决策工具,以加强门诊护理并预防不良后果。

相似文献

1
Novel Machine Learning Can Predict Acute Asthma Exacerbation.新型机器学习可预测哮喘急性加重
Chest. 2021 May;159(5):1747-1757. doi: 10.1016/j.chest.2020.12.051. Epub 2021 Jan 10.
8
Spirometry use in children hospitalized with asthma.肺活量测定法在哮喘住院儿童中的应用。
Pediatr Pulmonol. 2014 May;49(5):451-7. doi: 10.1002/ppul.22854. Epub 2013 Sep 2.

引用本文的文献

6
AI model for predicting asthma prognosis in children.预测儿童哮喘预后的人工智能模型。
J Allergy Clin Immunol Glob. 2025 Jan 31;4(2):100429. doi: 10.1016/j.jacig.2025.100429. eCollection 2025 May.
9
Predicting Asthma Exacerbations Using Machine Learning Models.使用机器学习模型预测哮喘急性发作
Adv Ther. 2025 Jan;42(1):362-374. doi: 10.1007/s12325-024-03053-y. Epub 2024 Nov 18.

本文引用的文献

7
Childhood Asthma: Advances Using Machine Learning and Mechanistic Studies.儿童哮喘:机器学习和机制研究的进展。
Am J Respir Crit Care Med. 2019 Feb 15;199(4):414-422. doi: 10.1164/rccm.201810-1956CI.
9
Opening the black box of machine learning.打开机器学习的黑箱。
Lancet Respir Med. 2018 Nov;6(11):801. doi: 10.1016/S2213-2600(18)30425-9. Epub 2018 Oct 18.
10
Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease.理解哮喘表型、内型和疾病机制。
Clin Rev Allergy Immunol. 2019 Apr;56(2):219-233. doi: 10.1007/s12016-018-8712-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验