Wolde-Kidan Amanuel, Pham Quoc Dat, Schlaich Alexander, Loche Philip, Sparr Emma, Netz Roland R, Schneck Emanuel
Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
Division of Physical Chemistry, Chemistry Department, Lund University, P.O. Box 124, 22100 Lund, Sweden.
Phys Chem Chem Phys. 2019 Aug 21;21(31):16989-17000. doi: 10.1039/c9cp01953g. Epub 2019 Jul 25.
The influence of the co-solutes TMAO, urea, and NaCl on the hydration repulsion between lipid membranes is investigated in a combined experimental/simulation approach. Pressure-hydration curves obtained via sorption experiments reveal that the repulsion significantly increases when the membranes are loaded with co-solutes, most strongly for TMAO. As a result, the co-solutes retain additional water molecules and therefore provide membranes with a fluid and more physiological environment. The experimental data are quantitatively reproduced in complementary solvent-explicit atomistic molecular dynamics simulations, which yield the chemical potential of water. Simulation analysis reveals that the additional repulsion arises from the osmotic pressure generated by the co-solutes, an effect which is maximal for TMAO, due to its unfavorable interactions with the lipid headgroup layer and its extraordinarily high osmotic coefficient.
采用实验与模拟相结合的方法,研究了共溶质三甲胺 N-氧化物(TMAO)、尿素和氯化钠对脂质膜间水化斥力的影响。通过吸附实验获得的压力-水化曲线表明,当膜中含有共溶质时,斥力显著增加,其中 TMAO 的影响最为强烈。因此,共溶质保留了额外的水分子,从而为膜提供了一个更具流动性和更接近生理状态的环境。在互补的溶剂显式原子分子动力学模拟中定量再现了实验数据,该模拟得出了水的化学势。模拟分析表明,额外的斥力源于共溶质产生的渗透压,由于 TMAO 与脂质头基团层的不利相互作用及其极高的渗透系数,这种效应在 TMAO 中最为显著。