文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

评估深度自然语言处理在从放射学报告中确定肿瘤学结果方面的应用

Assessment of Deep Natural Language Processing in Ascertaining Oncologic Outcomes From Radiology Reports.

作者信息

Kehl Kenneth L, Elmarakeby Haitham, Nishino Mizuki, Van Allen Eliezer M, Lepisto Eva M, Hassett Michael J, Johnson Bruce E, Schrag Deborah

机构信息

Division of Population Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts.

Thoracic Oncology Program, Dana-Farber Cancer Institute, Boston, Massachusetts.

出版信息

JAMA Oncol. 2019 Oct 1;5(10):1421-1429. doi: 10.1001/jamaoncol.2019.1800.


DOI:10.1001/jamaoncol.2019.1800
PMID:31343664
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6659158/
Abstract

IMPORTANCE: A rapid learning health care system for oncology will require scalable methods for extracting clinical end points from electronic health records (EHRs). Outside of clinical trials, end points such as cancer progression and response are not routinely encoded into structured data. OBJECTIVE: To determine whether deep natural language processing can extract relevant cancer outcomes from radiologic reports, a ubiquitous but unstructured EHR data source. DESIGN, SETTING, AND PARTICIPANTS: A retrospective cohort study evaluated 1112 patients who underwent tumor genotyping for a diagnosis of lung cancer and participated in the Dana-Farber Cancer Institute PROFILE study from June 26, 2013, to July 2, 2018. EXPOSURES: Patients were divided into curation and reserve sets. Human abstractors applied a structured framework to radiologic reports for the curation set to ascertain the presence of cancer and changes in cancer status over time (ie, worsening/progressing vs improving/responding). Deep learning models were then trained to capture these outcomes from report text and subsequently evaluated in a 10% held-out test subset of curation patients. Cox proportional hazards regression models compared human and machine curations of disease-free survival, progression-free survival, and time to improvement/response in the curation set, and measured associations between report classification and overall survival in the curation and reserve sets. MAIN OUTCOMES AND MEASURES: The primary outcome was area under the receiver operating characteristic curve (AUC) for deep learning models; secondary outcomes were time to improvement/response, disease-free survival, progression-free survival, and overall survival. RESULTS: A total of 2406 patients were included (mean [SD] age, 66.5 [10.8] years; 1428 female [59.7%]; 2170 [90.2%] white). Radiologic reports (n = 14 230) were manually reviewed for 1112 patients in the curation set. In the test subset (n = 109), deep learning models identified the presence of cancer, improvement/response, and worsening/progression with accurate discrimination (AUC >0.90). Machine and human curation yielded similar measurements of disease-free survival (hazard ratio [HR] for machine vs human curation, 1.18; 95% CI, 0.71-1.95); progression-free survival (HR, 1.11; 95% CI, 0.71-1.71); and time to improvement/response (HR, 1.03; 95% CI, 0.65-1.64). Among 15 000 additional reports for 1294 reserve set patients, algorithm-detected cancer worsening/progression was associated with decreased overall survival (HR for mortality, 4.04; 95% CI, 2.78-5.85), and improvement/response was associated with increased overall survival (HR, 0.41; 95% CI, 0.22-0.77). CONCLUSIONS AND RELEVANCE: Deep natural language processing appears to speed curation of relevant cancer outcomes and facilitate rapid learning from EHR data.

摘要

重要性:肿瘤学的快速学习型医疗保健系统将需要可扩展的方法来从电子健康记录(EHR)中提取临床终点。在临床试验之外,诸如癌症进展和反应等终点并未常规编码到结构化数据中。 目的:确定深度自然语言处理是否可以从放射学报告中提取相关癌症结局,放射学报告是一种普遍存在但非结构化的EHR数据源。 设计、设置和参与者:一项回顾性队列研究评估了1112例接受肿瘤基因分型以诊断肺癌并于2013年6月26日至2018年7月2日参加丹娜法伯癌症研究所PROFILE研究的患者。 暴露:患者被分为精选集和保留集。人工摘要撰写人员对精选集中的放射学报告应用结构化框架,以确定癌症的存在以及癌症状态随时间的变化(即恶化/进展与改善/反应)。然后训练深度学习模型从报告文本中捕获这些结局,并随后在精选患者的10%留出测试子集中进行评估。Cox比例风险回归模型比较了精选集中无病生存期、无进展生存期和改善/反应时间的人工和机器整理结果,并测量了报告分类与精选集和保留集中总生存期之间的关联。 主要结局和指标:主要结局是深度学习模型的受试者工作特征曲线下面积(AUC);次要结局是改善/反应时间、无病生存期、无进展生存期和总生存期。 结果:共纳入2406例患者(平均[标准差]年龄,66.5[10.8]岁;1428例女性[59.7%];2170例[90.2%]为白人)。对精选集中1112例患者的放射学报告(n = 14230份)进行了人工审核。在测试子集中(n = 109),深度学习模型能够准确识别癌症的存在、改善/反应以及恶化/进展(AUC>0.90)。机器和人工整理得出的无病生存期(机器与人工整理的风险比[HR],1.18;95%CI,0.71 - 1.95)、无进展生存期(HR,1.11;95%CI,0.71 - 1.71)和改善/反应时间(HR,1.03;95%CI,0.65 - 1.64)的测量结果相似。在另外1294例保留集患者的15000份报告中,算法检测到的癌症恶化/进展与总生存期降低相关(死亡HR,4.04;95%CI,2.78 - 5.85),而改善/反应与总生存期增加相关(HR,0.41;95%CI,0.22 - 0.77)。 结论及意义:深度自然语言处理似乎能加快相关癌症结局的整理,并有助于从EHR数据中快速学习。

相似文献

[1]
Assessment of Deep Natural Language Processing in Ascertaining Oncologic Outcomes From Radiology Reports.

JAMA Oncol. 2019-10-1

[2]
Natural Language Processing to Ascertain Cancer Outcomes From Medical Oncologist Notes.

JCO Clin Cancer Inform. 2020-8

[3]
Performance of a Machine Learning Algorithm Using Electronic Health Record Data to Identify and Estimate Survival in a Longitudinal Cohort of Patients With Lung Cancer.

JAMA Netw Open. 2021-7-1

[4]
Deep Learning Approaches for Predicting Glaucoma Progression Using Electronic Health Records and Natural Language Processing.

Ophthalmol Sci. 2022-2-12

[5]
Machine learning and natural language processing (NLP) approach to predict early progression to first-line treatment in real-world hormone receptor-positive (HR+)/HER2-negative advanced breast cancer patients.

Eur J Cancer. 2021-2

[6]
Deep Learning-based Assessment of Oncologic Outcomes from Natural Language Processing of Structured Radiology Reports.

Radiol Artif Intell. 2022-7-20

[7]
Assessment of a Clinical Trial-Derived Survival Model in Patients With Metastatic Castration-Resistant Prostate Cancer.

JAMA Netw Open. 2021-1-4

[8]
Temporal bone radiology report classification using open source machine learning and natural langue processing libraries.

BMC Med Inform Decis Mak. 2016-6-6

[9]
Natural Language Processing for Automated Quantification of Brain Metastases Reported in Free-Text Radiology Reports.

JCO Clin Cancer Inform. 2019-4

[10]
Development and Validation of a Deep Learning Model for Earlier Detection of Cognitive Decline From Clinical Notes in Electronic Health Records.

JAMA Netw Open. 2021-11-1

引用本文的文献

[1]
Deep Learning Model for Natural Language to Assess Effectiveness of Patients With Non-Muscle Invasive Bladder Cancer Receiving Intravesical Bacillus Calmette-Guérin Therapy.

JCO Clin Cancer Inform. 2025-6

[2]
Empirical evaluation of artificial intelligence distillation techniques for ascertaining cancer outcomes from electronic health records.

NPJ Digit Med. 2025-6-10

[3]
Natural Language Processing of Radiology Reports to Assess Survival in Patients with Advanced Melanoma.

Cancers (Basel). 2025-5-7

[4]
Clinical Trial Notifications Triggered by Artificial Intelligence-Detected Cancer Progression: A Randomized Trial.

JAMA Netw Open. 2025-4-1

[5]
Assessing large language models for Lugano classification of malignant lymphoma in Japanese FDG-PET reports.

EJNMMI Rep. 2025-3-10

[6]
Clinico-genomic features predict distinct metastatic phenotypes in cutaneous melanoma.

bioRxiv. 2025-1-27

[7]
A series of natural language processing for predicting tumor response evaluation and survival curve from electronic health records.

BMC Med Inform Decis Mak. 2025-2-17

[8]
Artificial intelligence across oncology specialties: current applications and emerging tools.

BMJ Oncol. 2024-1-17

[9]
Shareable artificial intelligence to extract cancer outcomes from electronic health records for precision oncology research.

Nat Commun. 2024-11-12

[10]
Use of Natural Language Processing to Extract and Classify Papillary Thyroid Cancer Features From Surgical Pathology Reports.

Endocr Pract. 2024-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索