Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, USA.
Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, USA.
Nat Commun. 2024 Nov 12;15(1):9787. doi: 10.1038/s41467-024-54071-x.
Databases that link molecular data to clinical outcomes can inform precision cancer research into novel prognostic and predictive biomarkers. However, outside of clinical trials, cancer outcomes are typically recorded only in text form within electronic health records (EHRs). Artificial intelligence (AI) models have been trained to extract outcomes from individual EHRs. However, patient privacy restrictions have historically precluded dissemination of these models beyond the centers at which they were trained. In this study, the vulnerability of text classification models trained directly on protected health information to membership inference attacks is confirmed. A teacher-student distillation approach is applied to develop shareable models for annotating outcomes from imaging reports and medical oncologist notes. 'Teacher' models trained on EHR data from Dana-Farber Cancer Institute (DFCI) are used to label imaging reports and discharge summaries from the Medical Information Mart for Intensive Care (MIMIC)-IV dataset. 'Student' models are trained to use these MIMIC documents to predict the labels assigned by teacher models and sent to Memorial Sloan Kettering (MSK) for evaluation. The student models exhibit high discrimination across outcomes in both the DFCI and MSK test sets. Leveraging private labeling of public datasets to distill publishable clinical AI models from academic centers could facilitate deployment of machine learning to accelerate precision oncology research.
数据库可以将分子数据与临床结果联系起来,为癌症的精准研究提供新的预后和预测生物标志物。然而,在临床试验之外,癌症的结果通常只以电子病历 (EHR) 中的文本形式记录。人工智能 (AI) 模型已经被训练用于从单个 EHR 中提取结果。然而,由于患者隐私的限制,这些模型一直无法在其训练的中心之外传播。在这项研究中,直接在受保护的健康信息上训练的文本分类模型对成员推断攻击的脆弱性得到了证实。采用教师-学生蒸馏方法来开发可共享的模型,用于注释成像报告和肿瘤内科医生笔记中的结果。在 Dana-Farber 癌症研究所 (DFCI) 的 EHR 数据上训练的“教师”模型用于对来自医疗信息集市强化护理 (MIMIC)-IV 数据集的成像报告和出院小结进行标记。“学生”模型被训练用来使用这些 MIMIC 文档来预测教师模型分配的标签,并发送到 Memorial Sloan Kettering(MSK)进行评估。学生模型在 DFCI 和 MSK 测试集中的所有结果中都表现出了很高的辨别力。利用公共数据集的私有标记从学术中心提炼可发布的临床 AI 模型,可以促进机器学习的部署,从而加速精准肿瘤学研究。
Health Technol Assess. 2006-9
Cochrane Database Syst Rev. 2022-5-20
J Transl Med. 2025-1-27
NPJ Digit Med. 2024-5-1
Sci Rep. 2023-12-4
Sci Data. 2023-1-3
J Am Med Inform Assoc. 2023-1-18
IEEE Trans Emerg Top Comput. 2021
Cancer Discov. 2022-9-2