Suppr超能文献

使用电子健康记录和自然语言处理的深度学习方法预测青光眼进展

Deep Learning Approaches for Predicting Glaucoma Progression Using Electronic Health Records and Natural Language Processing.

作者信息

Wang Sophia Y, Tseng Benjamin, Hernandez-Boussard Tina

机构信息

Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, California.

Center for Biomedical Informatics Research, Stanford University, Palo Alto, California.

出版信息

Ophthalmol Sci. 2022 Feb 12;2(2):100127. doi: 10.1016/j.xops.2022.100127. eCollection 2022 Jun.

Abstract

PURPOSE

Advances in artificial intelligence have produced a few predictive models in glaucoma, including a logistic regression model predicting glaucoma progression to surgery. However, uncertainty exists regarding how to integrate the wealth of information in free-text clinical notes. The purpose of this study was to predict glaucoma progression requiring surgery using deep learning (DL) approaches on data from electronic health records (EHRs), including features from structured clinical data and from natural language processing of clinical free-text notes.

DESIGN

Development of DL predictive model in an observational cohort.

PARTICIPANTS

Adult patients with glaucoma at a single center treated from 2008 through 2020.

METHODS

Ophthalmology clinical notes of patients with glaucoma were identified from EHRs. Available structured data included patient demographic information, diagnosis codes, prior surgeries, and clinical information including intraocular pressure, visual acuity, and central corneal thickness. In addition, words from patients' first 120 days of notes were mapped to ophthalmology domain-specific neural word embeddings trained on PubMed ophthalmology abstracts. Word embeddings and structured clinical data were used as inputs to DL models to predict subsequent glaucoma surgery.

MAIN OUTCOME MEASURES

Evaluation metrics included area under the receiver operating characteristic curve (AUC) and F1 score, the harmonic mean of positive predictive value, and sensitivity on a held-out test set.

RESULTS

Seven hundred forty-eight of 4512 patients with glaucoma underwent surgery. The model that incorporated both structured clinical features as well as input features from clinical notes achieved an AUC of 73% and F1 of 40%, compared with only structured clinical features, (AUC, 66%; F1, 34%) and only clinical free-text features (AUC, 70%; F1, 42%). All models outperformed predictions from a glaucoma specialist's review of clinical notes (F1, 29.5%).

CONCLUSIONS

We can successfully predict which patients with glaucoma will need surgery using DL models on EHRs unstructured text. Models incorporating free-text data outperformed those using only structured inputs. Future predictive models using EHRs should make use of information from within clinical free-text notes to improve predictive performance. Additional research is needed to investigate optimal methods of incorporating imaging data into future predictive models as well.

摘要

目的

人工智能的进步已催生出一些青光眼预测模型,其中包括一个预测青光眼进展至手术的逻辑回归模型。然而,关于如何整合自由文本临床记录中的大量信息仍存在不确定性。本研究的目的是利用深度学习(DL)方法,基于电子健康记录(EHR)数据,包括结构化临床数据和临床自由文本记录的自然语言处理特征,预测需要手术的青光眼进展情况。

设计

在一个观察性队列中开发DL预测模型。

参与者

2008年至2020年在单一中心接受治疗的成年青光眼患者。

方法

从EHR中识别青光眼患者的眼科临床记录。可用的结构化数据包括患者人口统计学信息、诊断代码、既往手术以及包括眼压、视力和中央角膜厚度在内的临床信息。此外,患者前120天记录中的词汇被映射到基于PubMed眼科摘要训练的眼科领域特定神经词嵌入。词嵌入和结构化临床数据被用作DL模型的输入,以预测后续的青光眼手术。

主要观察指标

评估指标包括受试者操作特征曲线下面积(AUC)和F1分数、阳性预测值的调和平均值以及在保留测试集上的敏感性。

结果

4512例青光眼患者中有748例接受了手术。结合结构化临床特征以及临床记录输入特征的模型的AUC为73%,F1为40%,相比之下,仅使用结构化临床特征的模型(AUC为66%;F1为34%)和仅使用临床自由文本特征的模型(AUC为70%;F1为42%)。所有模型的表现均优于青光眼专家对临床记录的评估预测(F1为29.5%)。

结论

我们可以使用基于EHR非结构化文本的DL模型成功预测哪些青光眼患者需要手术。纳入自由文本数据的模型优于仅使用结构化输入的模型。未来使用EHR的预测模型应利用临床自由文本记录中的信息来提高预测性能。还需要进行更多研究来探讨将影像数据纳入未来预测模型的最佳方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/137f/9559076/03d3e927371c/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验