Suppr超能文献

转录调控模块分析表明,桥接蛋白在细胞外电子传递途径中整合了多种信号。

Transcriptional regulatory module analysis reveals that bridge proteins reconcile multiple signals in extracellular electron transfer pathways.

机构信息

State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, PR China.

School of Mathematics and Computer Science, Yichun University, Yichun, PR China.

出版信息

Proteins. 2020 Jan;88(1):196-205. doi: 10.1002/prot.25789. Epub 2019 Jul 25.

Abstract

Shewanella oneidensis MR-1 shows remarkable respiratory versatility with a large variety of extracellular electron acceptors (termed extracellular electron transfer, EET). To utilize the various electron acceptors, the bacterium must employ complex regulatory mechanisms to elicit the relevant EET pathways. To investigate the relevant mechanisms, we integrated EET genes and related transcriptional factors (TFs) into transcriptional regulatory modules (TRMs) and showed that many bridge proteins in these modules were signal proteins, which generally contained one or more signal processing domains (eg, GGDEF, EAL, PAS, etc.). Since Shewanella has to respond to diverse environmental conditions despite encoding few EET-relevant TFs, the overabundant signal proteins involved in the TRMs can help decipher the mechanism by which these microbes elicit a wide range of condition-specific responses. By combining proteomic data and protein bioinformatic analysis, we demonstrated that diverse signal proteins reconciled the different EET pathways, and we discussed the functional roles of signal proteins involved in the well-known MtrCAB pathway. Additionally, we showed that the signal proteins SO_2145 and SO_1417 played central roles in triggering EET pathways in anaerobic environments. Taken together, our results suggest that signal proteins have a profound impact on the transcriptional regulation of EET genes and thus have potential applications in microbial fuel cells.

摘要

希瓦氏菌属(Shewanella)MR-1 具有显著的呼吸多样性,能够利用多种细胞外电子受体(称为细胞外电子传递,EET)。为了利用各种电子受体,细菌必须采用复杂的调控机制来引发相关的 EET 途径。为了研究相关机制,我们将 EET 基因和相关转录因子(TFs)整合到转录调控模块(TRMs)中,并表明这些模块中的许多桥接蛋白都是信号蛋白,通常包含一个或多个信号处理结构域(如 GGDEF、EAL、PAS 等)。由于希瓦氏菌编码的 EET 相关 TFs 较少,但必须应对各种环境条件,因此这些模块中大量的信号蛋白可以帮助我们揭示这些微生物引发广泛的特定条件反应的机制。通过结合蛋白质组学数据和蛋白质生物信息学分析,我们证明了不同的信号蛋白协调了不同的 EET 途径,并讨论了参与著名的 MtrCAB 途径的信号蛋白的功能作用。此外,我们还表明,信号蛋白 SO_2145 和 SO_1417 在触发厌氧环境中的 EET 途径中起着核心作用。总之,我们的结果表明,信号蛋白对 EET 基因的转录调控有深远影响,因此在微生物燃料电池中有潜在的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验