Department of Organismic and Evolutionary Biology, Harvard Universitygrid.38142.3c, Cambridge, Massachusetts, USA.
BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA.
mBio. 2021 Feb 22;13(1):e0290421. doi: 10.1128/mbio.02904-21. Epub 2022 Feb 1.
Some bacteria and archaea have evolved the means to use extracellular electron donors and acceptors for energy metabolism, a phenomenon broadly known as extracellular electron transfer (EET). One such EET mechanism is the transmembrane electron conduit MtrCAB, which has been shown to transfer electrons derived from metabolic substrates to electron acceptors, like Fe(III) and Mn(IV) oxides, outside the cell. Although most studies of MtrCAB-mediated EET have been conducted in Shewanella oneidensis MR-1, recent investigations in and species have revealed that the electron-donating proteins that support MtrCAB in are not as representative as previously thought. This begs the question of how widespread the capacity for MtrCAB-mediated EET is, the changes it has accrued in different lineages, and where these lineages persist today. Here, we employed a phylogenetic and comparative genomics approach to identify the MtrCAB system across all domains of life. We found in the genomes of numerous diverse Bacteria from a wide range of environments, and the patterns therein strongly suggest that was distributed through both horizontal and subsequent vertical transmission, and with some cases indicating downstream modular diversification of both its core and accessory components. Our data point to an emerging evolutionary story about metal-oxidizing and -reducing metabolism, demonstrates that this capacity for EET has broad relevance to a diversity of taxa and the biogeochemical cycles they drive, and lays the foundation for further studies to shed light on how this mechanism may have coevolved with Earth's redox landscape. While many metabolisms make use of soluble, cell-permeable substrates like oxygen or hydrogen, there are other substrates, like iron or manganese, that cannot be brought into the cell. Some bacteria and archaea have evolved the means to directly "plug in" to such environmental electron reservoirs in a process known as extracellular electron transfer (EET), making them powerful agents of biogeochemical change and promising vehicles for bioremediation and alternative energy. Yet the diversity, distribution, and evolution of EET mechanisms are poorly constrained. Here, we present findings showing that the genes encoding one such EET system () are present in a broad diversity of bacteria found in a wide range of environments, emphasizing the ubiquity and potential impact of EET in our biosphere. Our results suggest that these genes have been disseminated largely through horizontal transfer, and the changes they have accrued in these lineages potentially reflect adaptations to changing environments.
一些细菌和古菌已经进化出利用细胞外电子供体和受体进行能量代谢的方法,这种现象通常被称为细胞外电子传递(EET)。一种这样的 EET 机制是跨膜电子导管 MtrCAB,它已被证明可以将源自代谢底物的电子传递到细胞外的电子受体,如 Fe(III) 和 Mn(IV)氧化物。尽管大多数关于 MtrCAB 介导的 EET 的研究都是在 Shewanella oneidensis MR-1 中进行的,但最近在 和 物种中的研究表明,支持 MtrCAB 在 中的电子供体蛋白并不像以前想象的那样具有代表性。这就引出了一个问题,即 MtrCAB 介导的 EET 的能力有多广泛,它在不同谱系中积累了哪些变化,以及这些谱系今天在何处存在。在这里,我们采用系统发育和比较基因组学的方法来鉴定所有生命领域的 MtrCAB 系统。我们在来自广泛环境的许多不同细菌的基因组中发现了 ,并且其中的模式强烈表明 是通过水平和随后的垂直传播分布的,并且在某些情况下,其核心和辅助成分都存在下游模块化多样化。我们的数据指向一个关于金属氧化和还原代谢的新兴进化故事,表明这种 EET 能力与广泛的分类群及其驱动的生物地球化学循环具有广泛的相关性,并为进一步的研究奠定了基础,以阐明这种机制可能与地球的氧化还原景观如何共同进化。虽然许多代谢作用都利用了可溶性、可渗透细胞的底物,如氧气或氢气,但还有其他底物,如铁或锰,无法带入细胞。一些细菌和古菌已经进化出直接“插入”到这种环境电子储库的方法,这个过程被称为细胞外电子传递(EET),使它们成为生物地球化学变化的强大因素,并成为生物修复和替代能源的有前途的载体。然而,EET 机制的多样性、分布和进化仍然受到限制。在这里,我们提出的研究结果表明,编码这样一种 EET 系统()的基因存在于广泛多样性的细菌中,这些细菌存在于广泛的环境中,强调了 EET 在我们生物圈中的普遍性和潜在影响。我们的结果表明,这些基因主要通过水平转移传播,它们在这些谱系中积累的变化可能反映了对环境变化的适应。