Institute for Regenerative Medicine (IREM), Center for Therapy Development and Good Manufacturing Practice, University of Zurich, Zurich, Switzerland.
Division of Trauma Surgery, Center for Clinical Research, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
Acta Biomater. 2019 Oct 1;97:333-343. doi: 10.1016/j.actbio.2019.07.032. Epub 2019 Jul 22.
An ideal cell source for human therapeutic and disease modeling applications should be easily accessible and possess unlimited differentiation and expansion potential. Human induced pluripotent stem cells (hiPSCs) derived from peripheral blood mononuclear cells (PBMCs) represent a promising source given their ease of harvest and their pluripotent nature. Previous studies have demonstrated the feasibility of using PBMC-derived hiPSCs for vascular tissue engineering. However, so far, no endothelialization of hiPSC-derived tissue engineered vascular grafts (TEVGs) based on fully biodegradable polymers without xenogenic matrix components has been shown. In this study, we have generated hiPSCs from PBMCs and differentiated them into αSMA- and calponin-positive smooth muscle cells (SMCs) as well as endothelial cells (ECs) positive for CD31, vWF and eNOS. Both cell types were co-seeded on PGA-P4HB starter matrices and cultured under static or dynamic conditions to induce tissue formation in vitro. The resulting small diameter vascular grafts showed abundant amounts of extracellular matrix, containing a thin luminal layer of vWF-positive cells and a subendothelial αSMA-positive layer approximating the architecture of native vessels. Our results demonstrate the successful generation of TEVGs based on SMCs and ECs differentiated from PBMC-derived hiPSC combined with a biodegradable polymer. These results pave the way for developing autologous PBMC-derived hiPSC-based vascular constructs for therapeutic applications or disease modeling. STATEMENT OF SIGNIFICANCE: We report for the first time the possibility to employ human peripheral blood mononuclear cell (PBMC)-derived iPSCs to generate biodegradable polymer-based tissue engineered vascular grafts (TEVG), which mimic the native layered architecture of blood vessels. hiPSCs from PBMCs were differentiated into smooth muscle cells as well as endothelial cells. These cells were co-seeded on a biodegradable PGA/P4HB scaffold and cultured in a bioreactor to induce tissue formation in vitro. The resulting small diameter TEVG showed abundant amounts of extracellular matrix, containing a αSMA-positive layer in the interstitium and a thin luminal layer of vWF-positive endothelial cells approximating the architecture of native vessels. Our findings improving the generation of autologous vascular replacements using blood as an easily accessible cell source.
用于人类治疗和疾病建模应用的理想细胞来源应该易于获得,并具有无限的分化和扩增潜力。人诱导多能干细胞(hiPSCs)来源于外周血单核细胞(PBMCs),因其易于采集和多能性而成为一种很有前途的来源。先前的研究已经证明了使用 PBMC 来源的 hiPSCs 进行血管组织工程的可行性。然而,到目前为止,还没有显示出基于完全可生物降解聚合物且没有异种基质成分的 hiPSC 衍生组织工程血管移植物(TEVGs)的内皮化。在这项研究中,我们从 PBMC 中生成了 hiPSCs,并将其分化为αSMA 和 calponin 阳性的平滑肌细胞(SMCs)以及 CD31、vWF 和 eNOS 阳性的内皮细胞(ECs)。这两种细胞类型都被接种在 PGA-P4HB 起始基质上,并在静态或动态条件下培养,以在体外诱导组织形成。由此产生的小直径血管移植物含有大量细胞外基质,其中含有富含 vWF 的细胞的薄管腔层和接近天然血管结构的亚内皮αSMA 阳性层。我们的结果表明,成功地基于从 PBMC 衍生的 hiPSC 分化的 SMC 和 EC 以及可生物降解聚合物生成了 TEVG。这些结果为开发用于治疗应用或疾病建模的基于自体 PBMC 衍生的 hiPSC 的血管构建体铺平了道路。
我们首次报告了用人外周血单核细胞(PBMC)衍生的 iPSCs 生成可生物降解聚合物基组织工程血管移植物(TEVG)的可能性,该移植物模拟了血管的天然分层结构。从 PBMC 分化而来的 hiPSCs 分化为平滑肌细胞和内皮细胞。这些细胞被接种在可生物降解的 PGA/P4HB 支架上,并在生物反应器中培养以诱导体外组织形成。由此产生的小直径 TEVG 含有大量细胞外基质,其中包含间质中的αSMA 阳性层和富含 vWF 的内皮细胞的薄管腔层,该层接近天然血管的结构。我们的发现改善了使用血液作为易于获得的细胞来源来生成自体血管替代品的方法。